
DB-1© Gunnar Gotshalks

Associative Database Managment

 WIlensky Chapter 22

DB-2© Gunnar Gotshalks

Associative Database

◊ An associative database is a collection of facts
retrievable by their contents

» Is a poodle a dog? Which people does Alice
manage?

» As opposed to retrieving facts by their position in
the data base

> Give me the 10'th fact
What is the 10'th fact ?

◊ The facts in a database can be stored as patterns

◊ We can use a pattern matcher to search for facts in a
database

» Match a query pattern against the patterns in the
database looking for one or more matches

DB-3© Gunnar Gotshalks

Example database facts

◊ Simple facts have no variables

 (dog fido) fido is a dog

 (loves John Mary) John loves Mary

◊ Can have more complex facts

 (implies (dog ?x) (animal ?x))

 x is a dog implies x is an animal

 (loves ?x ?x)

 A person loves themselves

◊ One has to carefully consider how to represent facts. In
the Lisp world it is customary to have the first item on a list
be the main predicate and the remaining items be the
arguments to the predicate

DB-4© Gunnar Gotshalks

Example queries

◊ Queries are patterns themselves – they can be without
variables

» Is fido a dog? (dog fido)

» Does John love Mary? (loves John Mary)

◊ Can have more complex queries

» What is fido?

 (?what fido)

» Who does John love?

 (loves John ?who)

» Who loves whom?

 (loves ?who ?whom)

DB-5© Gunnar Gotshalks

Implementation

◊ In designing a database we need to consider how the
facts will be stored

◊ In our first implementation the facts are all stored in a list.

 (dog fido)
(loves John Mary)
(implies (dog ?x) (animal ?x))
(loves ?x ?x)

 -->

 ((loves (*var* #:var12) (*var* #:var12))
 (implies (dog (*var* #:var11))
 (animal (*var* #:var11)))
 (loves john mary)
 (dog fido)
)

DB-6© Gunnar Gotshalks

Add to the database

◊ Store the database as the value of a symbol.

» Want to pass an unevaluated pattern and
unevaluated symbol to our add operation

> Use a macro

> Change the value of the symbol to update the
database

> Replace the names of the pattern matching
variables to be unique

 (defmacro add-to-data-base (item d-b-name)

 `(setq ,d-b-name
 (cons (replace-variables (quote ,item))

 ,d-b-name)))

DB-7© Gunnar Gotshalks

Replace variable names

◊ Replace the variables names in item

> Replacing variables names needs to be done
consistently.

> Create a binding list that keeps track of renaming.

> Start off with a nil binding

> Returns the rebuilt item and the bindings of old and
new variable names

 (defun replace-variables (item)

 (values (replace-variables-with-bindings item nil)))

DB-8© Gunnar Gotshalks

Replace variable names using bindings

◊ Use the current bindings to replace variables consistently

 (defun replace-variables-with-bindings
 (item bindings)

> For an atom nothing to replace

 (cond ((atom item) (values item bindings))

> For a pattern variable return a replacement, if necessary

 ((pattern-var-p item)
 (let ((var-binding (get-binding item bindings)))
 (if var-binding ; if on binding list return the binding
 (values var-binding bindings)

 ; else generate a new symbol

 (let ((newvar (list '*var* (gensym "VAR"))))
 (values newvar (add-binding item newvar
 bindings))))))

DB-9© Gunnar Gotshalks

Replace variable names using bindings – 2

> Item is neither an atom nor a pattern variable
– use recursion

> Have to remember bindings from the "car"
recursion for the "cdr" recursion

 (t (multiple-value-bind (newlhs lhsbindings)

 (replace-variables-with-bindings
 (car item) bindings)

 (multiple-value-bind (newrhs finalbindings)

 (replace-variables-with-bindings
 (cdr item) lhsbindings)

 (values (cons newlhs newrhs)
 finalbindings))))

))

DB-10© Gunnar Gotshalks

Replace variable examples

 (replace-variables '(loves john mary))

 --> (LOVES JOHN MARY)

 (replace-variables '(loves ?x ?x))

 --> (LOVES (*VAR* #:VAR20) (*VAR* #:VAR20))

DB-11© Gunnar Gotshalks

Start a database

 (setq DB nil)

 (add-to-data-base (loves john mary) DB)

 --> ((loves john mary))

 (add-to-data-base (loves ?x ?x) DB)

 --> ((loves (*var* #:var22) (*var* #:var22))

 (loves john mary))

 (add-to-data-base (dog fido) DB)

 --> ((dog fido)

 ((loves (*var* #:var22) (*var* #:var22))

 (loves john mary))

DB-12© Gunnar Gotshalks

Query the data base

◊ Use the matcher program to query the database

> Returns a list of bindings that match

 (defun query (request data-base)
 (mapcan
 #'(lambda (item)
 (multiple-value-bind (flag bindings)
 (match item request)
 (if flag (list bindings))))
 data-base)

)

> mapcan is like mapcar except it uses nconc in
place of append

> nconc is a destructive replacement of the cdr part
of a cell for speed

DB-13© Gunnar Gotshalks

Example queries

 (query '(fido dog) DB) ; not in database
--> nil

 (query '(dog fido) DB) ; in DB - no variables
--> (nil)

 (query '(loves john john) DB) ; in DB - hidden variables
--> ((((*var* #:var22) john)))

 (query '(dog ?name) DB) ; Variable in query
--> ((((*var* name) fido)))

 (query '(loves ?x ?y) DB) ; Multiple matches
--> ((((*var* x) (*var* y)) ((*var* #:var61) (*var* x)))

 (((*var* y) mary) ((*var* x) john)))

DB-14© Gunnar Gotshalks

Implementation – 2

◊ Previous implementation becomes slow as the database
increases in size.

» Search is O(n) – where n is the number of facts

◊ Reduce search time by indexing the facts

» Put facts with different predicates on different lists

» Put facts with the same predicate on the same list

» Search significantly shorter lists by only searching
lists that match the predicate in the query

◊ The fact lists are put on the property list of the predicate
with the key being the database symbol

» Facts could be in some databases and not in
others

DB-15© Gunnar Gotshalks

Indexing example

◊ Enter the following into the indexed database

 (index '(loves john mary) 'DB)

 (index '(loves ?x ?x) 'DB)

 (index '(person john) 'DB)

 (index '(poodle fido) 'DB)

◊ Then look at the property lists for the predicates

 (symbol-plist 'person) --> (db ((person john
)))

 (symbol-plist 'poodle) --> (db ((poodle fido)))

 (symbol-plist 'loves) -->

 (db ((loves (*var* #:var13) (*var* #:var13))

 (loves john mary)))

DB-16© Gunnar Gotshalks

Other index lists

◊ The previous examples assumed facts would begin with
an atom that could become a symbol with a propertly list

◊ What if a fact begins with a list?

> For example, could represent "if x is a woman
then x is mortal" as the following (--> is a valid
symbol in Lisp)

 ((?x woman) --> (?x mortal))

> Have the special atom *list* to hold such facts

◊ What if a fact begins with a variable?

> "everyone loves Barney" could be encoded as

 (?x loves Barney)

> Have the special atom *var* to hold such facts

DB-17© Gunnar Gotshalks

What about searching the entire DB?

◊ If we have a query that begins with a variable, then the variable
could match a variable, a list or any atom. Hence the entire
data base would need to be searched.

◊ How can we do this if the database is scattered across the
property lists of many symbols?

◊ Have to keep track of the index symbols with the symbol for the
database

> Add to the property list for the database symbol the
list of *keys* that have been used as indices.

> In the example, several slides back, you could look
at the symbol list for DB

 (symbol-plist 'DB) --> (*keys* (poodle person loves))

DB-18© Gunnar Gotshalks

Index function for a database

 (defun index (item data-base)

> place is where we want to store the item – use the key
for the pattern

 (let ((place (cond ((atom (car item)) (car item))
 ((pattern-var-p (car item)) '*var*)
 (t '*list*))))

> Store the item itself

 (setf (get place data-base)
 (cons (replace-variables item) ; rename variables
 (get place data-base)))

> Store the key for the item – adjoin adds only if not there

 (setf (get data-base '*keys*)
 (adjoin place (get data-base '*keys*)))))

DB-19© Gunnar Gotshalks

Fast query

 (defun fast-query (request data-base)
 (if (pattern-var-p (car request))
 (mapcan #'(lambda (key) ; Search entire DB
 (query request (get key data-base)))
 (get data-base '*keys*))
 (nconc

> else search under "atom" or *list*

 (query request (get (if (atom (car request))
 (car request) '*list*)
 data-base)
)

> Add in search under *var* if "atom" or *list*
search

 (query request (get '*var* data-base)))))

DB-20© Gunnar Gotshalks

Deductive retrieval

◊ We use backward chaining

◊ Store implications in the database in the following form

 (<- consequent antecedent)

◊ In addition to querying the database in the normal way we
add the following query

 (<- request antecedent)

◊ If the second query suceeds we recursively query using
the returned antecedent as a new request

 (<- previous-antecedent antecedent)

◊ And so on – we proceed backwards from the query to the
base facts

DB-21© Gunnar Gotshalks

Deductive retrieval example

◊ Let's add the following to the database

 (index '(<- (mammal ?x) (dog ?x)) 'DB)
(index '(<- (dog ?x) (poodle ?x)) 'DB)
(index '(poodle fido) 'DB)

◊ And make the following query

 (mammal fido)

> matches fact 1 using the implication search with
antecedent --> (dog fido)

◊ Make the recursive query – matches fact 2

 antecedent --> (poodle fido)

◊ Make the recursive query - matches fact 3

» return success ; no further recursion

DB-22© Gunnar Gotshalks

Deductive retrieval function – 1

 (defun retrieve (request data-base)

> Combine a regular seach

 (nconc (fast-query request data-base)

> with a recursive search over the implications

 (mapcan

 ... the function to apply to the
 implication search ...

> Get the next level of implication search – note
the use of a macro to construct the pattern to
use for the search

 (fast-query `(<- ,request ?antecedent)
 data-base)

)))

DB-23© Gunnar Gotshalks

Deductive retrieval function – 2

 ... the function to apply to the implication search ...

 #'(lambda (bindings)
> Search for each of the bindings of antecedent and

add to the list of bindings

 (mapcar #'(lambda (rbindings)
 (append rbindings bindings))

> Recursive search on an antecedent. Need to replace
the variables in antecedent with their values, if any

 (retrieve (substitute-vars
 (get-binding '?antecedent
 bindings)
 bindings)
 data-base)
))

DB-24© Gunnar Gotshalks

Substituting variables

◊ Suppose we have the following binding list

 ((?antecedent (loves john ?y)) (?y ?z) (?z mary))

◊ We do not want to search for the more general

 (loves john ?y)

◊ Because we have bindings that restrict the value of ?y

◊ A first level substitution for ?z --> ?y yields a search
pattern of

 (loves john ?z)

◊ But this is still too general as we have a binding for ?z

◊ Need to do a second level, ?mary --> ?z , recursive
substitution to get the pattern we want to search on

 (loves john mary)

DB-25© Gunnar Gotshalks

Substitute variables for deductive retrieval

 (defun substitute-vars (item bindings)

> Nothing to do if item is an atom

 (cond ((atom item) item)

> Potential substitution if a variable

 ((pattern-var-p item)
 (let ((binding (get-binding item bindings)))

> Substitute only if we have a binding for the item

 (if binding
 (substitute-vars binding bindings)
 item)))

> Have a list, so recursively substitute on first and rest

 (t (cons (substitute-vars (car item) bindings)
 (substitute-vars (cdr item) bindings)))))

