
PM-1© Gunnar Gotshalks

Pattern Matching

 Wilensky Chapter 21

PM-2© Gunnar Gotshalks

Pattern Matching

◊ A ubiquitous function in intelligence is pattern matching
» IQ tests, for example, contain pattern matching

problems because they are recognized as an
important class of problem that people deal with.

◊ Pattern matching means to compare one object with
another object and recognize if they are similar
» Basic case is comparing constants
» More interesting is to compare parameterized

patterns
> A is like B except for
> A is like B where ...

– a statement that subobjects, while not identical,
correspond to each other

PM-3© Gunnar Gotshalks

What is a pattern?

◊ In Lisp, a pattern is a form (S-expression) that contains
» constants – called literals
» pattern matching variables

◊ We need a syntax to differentiate the two
» Can prefix pattern matching variables with ?

> for example ?x ?abc

◊ An abstract pattern could look like
» (a b ?x c ?y)

◊ A more meaningful pattern could be
» (causes (hit ?x ?y) (hurt ?y))

> Interpreted as – x hitting y, causes y to be hurt

PM-4© Gunnar Gotshalks

Pattern variable representation

◊ How will we represent pattern matching variables in Lisp?
– the rest is simply a list with symbols for the constants

» Use the construct (*VAR* X)

> where *VAR* is a special symbol we recognize
within the matcher program

PM-5© Gunnar Gotshalks

When do two patterns match?

◊ Two patterns can be matched when it is possible to unify
them

◊ Unification means an assignment can be made to the
variables in each pattern such that the patterns become
identical.
» We usually mean the most general possible

assignment.

◊ An assignment is shown by the pair (variable value)
» ((*VAR* X) abc)
» ((*VAR* X) (*VAR* Y))

PM-6© Gunnar Gotshalks

Unification Examples – 1

» (a ?x b)
(a y b)

» (a ?x b)
(a ?y b)

» (a ?x (b ?z))
(a (((e))) ?y)

match if ?x <-- y
we say that ?x is bound to y

match if ?x <-- ?y

match if ?x <-- (((e)))
 ?y <-- (b ?z)

PM-7© Gunnar Gotshalks

Unification Examples – 2

◊ More complex examples
» (a ?x ?x)

(a ?y c)
> Cannot naively bind ?x to ?y and then ?x to c as

then we are trying to assign two different values
to ?x need to substitute ?y for ?x and then see
that ?y binds to c

» (a ?x ?x ?x)
(a ?y ?y ?y)

> Cannot naively try to bind ?x to ?y , as on the
second attempt, we end up binding ?y to ?y ,
then on the third attempt, we have an infinite
loop

match if ?x = ?y
 and ?y = c

PM-8© Gunnar Gotshalks

Unification Examples – 3

◊ More complex examples

» (a ?x ?x)
(a ?y (b ?y))

> Again need to prevent an infinite loop

There is no consistent binding
to make a match

PM-9© Gunnar Gotshalks

Pattern variable input

◊ How do we represent input?
» We would like to keep the notation ?x
» Instruct the read program to recognize the

construct ?symbol and create the list
(*VAR* symbol)

 (set-macro-character #\? ;See page 245
 #’(lambda (stream char)
 (list '*var* (read stream t nil t))))

» Test with (read), enter ?x and see (*VAR* x) as the
result

PM-10© Gunnar Gotshalks

Pattern matcher output

◊ Need to distinguish three cases (see p369 for a discussion)
» No match is possible

> output is nil
» Match is possible but no variable bindings are

required
> output is T ; nil – two values returned

» Match is possible with variable bindings
> output is T ; (list of bindings)
> a binding is a pair ((*VAR* variable) value)

◊ Example with a binding required
» (match '(a ?x c ?y e) '(a b ?z d e))

> T ; (((*VAR* Y) D) ((*VAR* Z) C) ((*VAR* X) B))

PM-11© Gunnar Gotshalks

Matcher

◊ Reminder that we need to define the macro characer ?
 (set-macro-character #\?
 #’(lambda (stream char)
 (list '*var* (read stream t nil t))))

◊ The entry function creates the initial empty binding
 (defun match (pattern1 pattern2)
 (match-with-bindings pattern1 pattern2 nil))

PM-12© Gunnar Gotshalks

Matching cases – 1

◊ Matching two patterns requires a recursive descent into
the patterns to match sub-patterns the following cases can
occur
» Pattern1 – a variable, an atom, a list
» Pattern2 – a variable, an atom, a list

PM-13© Gunnar Gotshalks

Matching cases - 2

◊ The matching program has to examine the possible
combinations
 Pattern1 Pattern2 Result
 atom atom match if equal, else no match
 atom variable try to bind atom to variable
 atom list no match
 variable atom try to bind atom to variable
 variable variable try to bind variable to variable
 variable list try to bind list to variable
 list atom no match
 list variable try to bind list to variable
 list list recursive descent on first and rest

PM-14© Gunnar Gotshalks

Match with bindings – 1

◊ Organize when bindings need to be done
 (defun match-with-bindings (pattern1 pattern2 bindings)

 (cond
> Pattern 1 is a variable?

 ((pattern-var-p pattern1)
 (variable-match pattern1 pattern2 bindings))

> Pattern 2 is a variable?
 ((pattern-var-p pattern2)

 (variable-match pattern2 pattern1 bindings))
> Pattern 1 is an atom? Note use of values

 ((atom pattern1)
 (if (eq pattern1 pattern2) (values t bindings)))

> Pattern 2 is an atom?
 ((atom pattern2) nil)

PM-15© Gunnar Gotshalks

Match with bindings – 2

> Pattern1 and Pattern2 are both lists – use
recursion and multiple values

 (t
 (multiple-value-bind (flag carbindings)

 (match-with-bindings (car pattern1)
 (car pattern2)
 bindings)

 (and flag
 (match-with-bindings (cdr pattern1)

 (cdr pattern2)
 carbindings)
)))))

PM-16© Gunnar Gotshalks

Variable match

◊ Find a binding for pattern-var within item using the
current bindings

 (defun variable-match (pattern-var item bindings)

> Check for equality – no additional bindings are
necessary

 (if (equal pattern-var item) (values t bindings)

> Otherwise ...

PM-17© Gunnar Gotshalks

Variable match – 2

◊ Need a binding
 (let ((var-binding ;;; determine if a binding already exits
 (get-binding pattern-var bindings)))

> Handle the case where a binding exists
 (cond (var-binding
 (match-with-bindings var-binding item bindings))

> No binding for the variable – check for circularity –
need to see if the pattern-var occurs in item or is
bound to a variable in item.

 ((not (contained-in pattern-var item bindings))
 (values t
 (add-binding pattern-var item bindings)))
))))

PM-18© Gunnar Gotshalks

Contained in – 1

◊ Check for circularity by – seeing if pattern-var occurs in
item or is defined as the value of a binding of a variable in
item
 (defun contained-in (pattern-var item bindings)

> Cannot be contained in an atom
 (cond ((atom item) nil)

> Check if item is a variable
 ((pattern-var-p item)

> Does pattern-var occur in item
 (or (equal pattern-var item)

> Does pattern-var occur as the value of a binding?
 (contained-in pattern-var

 (get-binding item bindings)
 bindings)))

PM-19© Gunnar Gotshalks

Contained in – 2

> The item is a list so recursively check for
contained in

 (t
 (or (contained-in pattern-var (car item)

 bindings)
 (contained-in pattern-var (cdr item)

 bindings)
))))

PM-20© Gunnar Gotshalks

Matcher – Housekeeping functions

◊ Add the binding to the current bindings (a list of 2
element lists)
 (defun add-binding (pattern-var item bindings)

 (cons (list pattern-var item) bindings))

◊ If item is a pattern variable return true, else return false
 (defun pattern-var-p (item)

 (and (listp item) (eq '*var* (car item))))

◊ Get the binding, if any, for pattern-var in the binding list
bindings
 (defun get-binding (pattern-var bindings)

 (cadr (assoc pattern-var bindings :test #'equal)))

