
MAC-1© Gunnar Gotshalks

Macros

 WIlensky Chapters 13 & 14

MAC-2© Gunnar Gotshalks

What are macros?

◊ Macros are functions that output program text
» They output a sequence of characters which Lisp

handles as if you had typed them in yourself
» The sequence is analysed within the context in

which it appears
» Eventually the sequence is part of an expression

that will be evaluated
> Hence the term program text is used to describe

the output of a macro

◊ In the simplest case a macro is like an abbreviation
» ASAP ==> As Soon As Possible
» We write ASAP but expect our readers to see this

as being “As Soon As Possible”

MAC-3© Gunnar Gotshalks

Example – 1

◊ Consider writing support functions to extract the
components of a data structure describing a disc in a
plane

> ((xPosition yPosition) radius)
 (defun xPos (disc) (caar disc))
 (defun yPos (disc) (cadar disc))
 (defun radius (disc) (cadr disc))

◊ They could be introduced to make a program more
readable by hiding the structure of a disc

◊ We can do the same thing with a macro

MAC-4© Gunnar Gotshalks

Disc support functions ==> macros

◊ Convert the functions to macros.
 (defmacro xPos (disc) (list 'caar disc))

> Returns (caar disc)
 (defmacro yPos (disc) (list 'cadar disc))

> Returns (cadar disc)
 (defmacro radius (disc) (list 'cadr disc))

> Returns (cadr disc)

◊ Note the use of list to combine terms and the use of quote
to not evaluate constants

MAC-5© Gunnar Gotshalks

Use the macros

◊ At the interpreter level
 (setq theDisc '((11 22) 33))
 (xPos 'theDisc)

> 11
◊ No difference is visible between the macro and the

function – why?
◊ the xPos macro was expanded and then evaluated

because of the interpreter read-eval-print loop
◊ Use the following to see the output of xPos

 (macroexpand-1 '(xPos theDisc))
> (caar theDisc)

◊ The output of xPos is evaluated by eval

disc replaced with symbol theDisc

MAC-6© Gunnar Gotshalks

Why use macros?

◊ Since the result of executing function version and macro
version have same result, why have macros?

◊ Can modify the syntax of writing expressions in Lisp
(within the bounds of a list structure).
» You write an expression in a syntax that

> is more expressive of the intent
> frequently requires less typing
> is easier to understand
> is less error prone

» The corresponding macro produces an equivalent
Lisp expression that is executed

MAC-7© Gunnar Gotshalks

Example – 2

◊ Illustration that macros output program text. Consider the
following
 (defmacro xx () '(+ a b))
 (defun xy (a b) (xx))
 (xy 3 4)

> 7
 (defun xx () (+ a b))
 (defun xy (a b) (xx))
 (xy 3 4)

> “a is unbound”

MAC-8© Gunnar Gotshalks

Macro Expansion

◊ If you try, in Clisp, (symbol-function 'xy) you will see in
each case that xx remains as a symbol. Only at
evaluation time is xx evaluated
» A macro is expanded and then evaluated.
» Macros are expanded once within a function. Once

expanded the program text remains within the
body of the function.

MAC-9© Gunnar Gotshalks

Macro Expansion – 2

◊ In PowerLisp and Clisp the function is modified even at
the interpreter level.
 (defmacro xx () '(+ a b))
 (defun xy (a b) (xx))
 (xy 3 4) ==> 7
 (defun xx () (+ a b))
 (xy 3 4) ==> 7 (in PowerLisp, Clisp)

 “a is unbound” (in gcl)
> In some Lisps, such as gcl, at the interpreter

level, the latest definition is always accessed
◊ The macro is expanded only once if the function is

invoked within a loop.

MAC-10© Gunnar Gotshalks

Construction method

◊ Use list to build the lists and sublists, etc., corresponding
to the S-expression you want to build.

◊ Use quote to insert constants – such as function names –
leave variables unquoted so they evaluate.

> Free symbols within the macro are “constants”
as far as macro creation is concerned so they
must quoted.

 (defmacro xx () (list '+ 'a 'b))
> +, a and b are free symbols so they are quoted
> In this case we want the entire list, so

alternately could have
 (defmacro xx () '(+ a b))

MAC-11© Gunnar Gotshalks

Construction method – 2

> Bound symbols within the macro are usually not
quoted because you want the symbols within
the macro expression to bind to the local
symbols with the same name

 (defmacro xPos (disc) (list 'caar disc))
> disc is a bound symbol so leave it unquoted –

we want it to bind to the parameter disc. caar is
a constant

MAC-12© Gunnar Gotshalks

Example 3

◊ Write a macro foreach that applies a function (func) to
each item in a list that satisfies a predicate (test) and
returns nil otherwise
 (setq b1 '(11 20 33 40 55 60))
 (foreach b1 '1+ 'evenp)

> (nil 21 nil 41 nil 61)

◊ First write the expression we want identifying the
parameters
 (mapcar (function (lambda (item)

 (cond ((funcall test item)
 (funcall func item)))))
 list
)

MAC-13© Gunnar Gotshalks

Example 3 – 2

◊ Create the macro definition header
 (defmacro foreach (list func test)

◊ Write the body of the macro – for every '(' you need '(list'
 (list 'mapcar

 (list 'function
 (list 'lambda
 (list 'item)
 (list 'cond
 (list (list 'funcall test 'item)
 (list 'funcall func 'item)))))
 list)

) ;; end foreach

MAC-14© Gunnar Gotshalks

Example 3 – 3

◊ After you have loaded the macro definition you can see its
expansion
 (macroexpand-1 '(foreach b1 '1+ 'evenp))

◊ The result is the program text we expect
 (mapcar (function (lambda (item)
 (cond ((funcall 'evenp item)

 (funcall '1+ item)))))
 b1)

◊ If we enter at the interpreter level the macro expands and
evaluates
 (foreach b1 '1+ 'evenp)

> (nil 21 nil 41 nil 61)

MAC-15© Gunnar Gotshalks

Parameters for macros

◊ Macro parameters can be designated as &optional,
&keyword and &rest (in macros a synonym is &body)

◊ &optional and &keyword can have default values and
the passed flag (see the slide set Writing More Flexible
Functions)

◊ The example shown uses list but you can invoke any
functions you want to compute the final program text the
macro creates

MAC-16© Gunnar Gotshalks

Flexible parameter structures

◊ So far we haven't seen any flexibility in the syntax of
parameter structures

◊ Suppose we want to call the macro using the following
 (foreach b1 (apply '1+) 'evenp)

> Note: within a macro the arguments are not
evaluated. The text itself is passed!

MAC-17© Gunnar Gotshalks

Flexible parameter structures – 2

◊ The corresponding macro definition could be the same as
before except we extract the function '1+ from the list
(apply '1+) passed to func

 (defmacro foreach (list func test)
 (list 'mapcar

 (list 'function
 (list 'lambda
 (list 'item)
 (list 'cond
 (list (list 'funcall test 'item)
 (list 'funcall (cadr func) 'item)))))
 list)

)

MAC-18© Gunnar Gotshalks

Flexible parameter structures – 3

◊ Suppose we want the following prototype calling sequence
 (foreach (item in list) (apply func) (when test))

◊ You can see how the macro definition would get more
complex.

◊ There is additional syntax that can be used in macro
definitions to simplify writing macros.

MAC-19© Gunnar Gotshalks

Flexible parameter structures – 4

◊ The flexibility can be achieved with the following
 (defmacro foreach ((item in list)

 (apply func)
 (when test))

 (list 'mapcar
 (list 'function
 (list 'lambda
 (list 'item)
 (list 'cond
 (list (list 'funcall test 'item)
 (list 'funcall func 'item)))))
 list)
)

◊ Same body as original! Parameter list has a structure.

MAC-20© Gunnar Gotshalks

Flexible parameter structures – 5

◊ Macros for foreach could have any of the following calling
sequences and still retain the same body.
 (foreach list func test)

(foreach (item in list) (apply func) (when test)
(foreach (list (when test) do func))
(foreach list (when test) func)
(foreach item in list do func when test)

◊ The "real parameters" are the green names in the above

◊ Use names at any level to extract corresponding
arguments when the macro is called

◊ The other names in the parameter list are "noise words"
inserted to make the macro prototype easier to
understand and the macro call easier to read.

MAC-21© Gunnar Gotshalks

Noise words
◊ Noise words are exactly that – noise. They have no meaning.

You can have anything in their place.

◊ For example assume you define a macro with the following
header
 (defmacro foreach

 ((item in list) (apply func) (when test)) )

◊ Then you can call it with any of the following and have the same
semantics
 (foreach (item in b1) (apply '+) (when 'evenp))
 (foreach (xyz abc b1) (gortz '+) (NOTWHEN 'evenp))
 (foreach ((1 2 3) in b1) (doNOTapply '+) (NEVER 'evenp))

◊ But you have to know which "names" are noise.

MAC-22© Gunnar Gotshalks

Simpler macro definitions – 1

◊ Using list is a complex way of constructing macro
definitions

◊ The same macro can be defined with the following
 (defmacro foreach

 ((item in list) (apply func) (when test))
 `(mapcar
 #'(lambda (item)
 (cond ((funcall ,test item)
 (funcall ,func item))))
 ,list)
)

Note use of backquote and comma

MAC-23© Gunnar Gotshalks

Simpler macro definitions – 2

◊ Notice this style is very similar to the function definition
 (defmacro foreach

 ((item in list) (apply func) (when test))
 `(mapcar
 #'(lambda (item)
 (cond ((,test item) (funcall ,func item))))
 ,list)
)

◊ Backquote is similar to quote – the quoted expression is
returned
» Use , (comma) to "unquote" parameters – use the

value of the parameter

MAC-24© Gunnar Gotshalks

Use of Comma

◊ “,” evaluates the following form.
 (defmacro comma-1 (aPair)

 `(cons ,(car aPair) ,(cdr aPair))
)
» macroexpand-1 on (comma-1 (a b)) gives the following
 (cons a (b))

◊ “,@” evaluates the following form and removes the outer ().
 (defmacro comma-2 (aPair)

 `(cons ,(car aPair) ,@(cdr aPair))
)
» macroexpand-1 on (comma-2 (a b)) gives the following
 (cons a b)

MAC-25© Gunnar Gotshalks

A Complex Example

◊ A contrived example to show various features working together.
 (defmacro complex (&body items)
 (let ((func (bu 'cons 0)))
 `(list ,@(mapcar #'(lambda (anItem)
 `(funcall ,func ',anItem))
 items))
))
» macroexpand-1 on (complex A B C) gives the following
 (list (funcall #<function: lambda(y) (funcall f x y)> 'A)
 (funcall #<function: lambda(y) (funcall f x y)> 'B)
 (funcall #<function: lambda(y) (funcall f x y)> 'C)
))
» When executed the following results
 ((0 . A) (0 . B) (0 . C))

MAC-26© Gunnar Gotshalks

On writing macro definitions

◊ When writing macro definitions you can combine
techniques
» Use parameter names within structures to extract

components
» Use full Lisp functionality to compute program text
» Use backquote to simplify the construction of

program text structures that do not require
computation

> Use comma to unquote parameters

MAC-27© Gunnar Gotshalks

Recursive macro definitions

◊ Write a macro that will cons all the items in a list
 (sc a b c d) ==>

 (cons a (cons b (cons c (cons d nil))))

◊ Here is a naive attempt
 (defmacro sc (&body theList)
 (cond ((null theList) nil)
 (t (list 'cons (car theList)

 (sc (cdr theList))))
))

◊ But you get stack overflow on expansion. Why?

MAC-28© Gunnar Gotshalks

Recursive macro definitions – 2

◊ Putting (print theList) after the t you get
 (a b c d)
 ((cdr thelist))
 ((cdr thelist))
 forever – a very long time

◊ Recall the arguments given a macro are text
» arguments are not evaluated
» so (cdr theList) is passed not the result of cdr

MAC-29© Gunnar Gotshalks

Recursive macro definitions – 2

◊ Recursive macro definitions require helper functions
 (defmacro sc (&body theList)

 (recursiveHelper theList))

 (defun recursiveHelper (theList)
 (cond ((null theList) nil)
 (t (list 'cons (car theList)
 (recursiveHelper (cdr theList))))))

◊ Now
 (sc a b c d) ==>

 (cons a (cons b (cons c (cons d nil))))
◊ Most macros are not so complex as to require recursion

but the technique is available when necessary

