Functional Programming

also see the notes on functionals

© Gunnar Gotshalks FN2-1

History

O 1977 Turing' Lecture John Backus described functional
programming

“The problem with ‘current languages’ is that they
are word-at-a-time” 2

> Notable exceptions then were Lisp and APL
> Now ML, Haskell and others

— 1 Turing award is the Nobel prize of computer science.

— 2 “Word-at-a-time” translates to ‘“‘byte-at-a-time” in
modern jargon. A word typically held 2 to 8 bytes
depending upon the type of computer.

© Gunnar Gotshalks FN2-2

Meaningful Units of Work

0 Work with operations meaningful to the application, not to
the underlying hardware & software

» Analogy with word processing is not to work with
characters and arrays or lists of characters

» But work with words, paragraphs, sections,
chapters and even books at a time, as appropriate.

© Gunnar Gotshalks FN2-3

Requires Abstraction

¢ Abstract out the control flow patterns

¢ QGive them names to easily reuse the control pattern

» For example in most languages we explicitly write
a loop every time we want to process an array of
data

» If we abstract out the control pattern, we can think
of processing the entire array as a single operation

© Gunnar Gotshalks FN2-4

Example 1

Consider the inner product of two vectors
<al,a2,..,an>®<b1,b2, ..., bn>

==> (al*b1 + a2*b2 + ... + an*bn)

In Java or C/C++, the following is an algorithm

result =0;
for(i=1,i<=n, i++){

result = result + a[i]*bli];
}

Note the explicit loop (or recursion) and introduction of
variables result, i and n (have to explicitly know the length
of the vectors

© Gunnar Gotshalks FN2-5

Example 1 — FP form

O innerProduct ::= (/+) o (a0 X) o trans

¢ Note the following properties of functional programs
» NO explicit loops (or recursion)
» NO sequencing at a low level
» NO local variables
¢ In addition, functional programs have the following
properties
» functions as input — in the above
> + (plus), x (times)
» functions as output — not shown in the above

> In FP frequently write functions that produce a
new function using other functions as input

© Gunnar Gotshalks FN2-6

Evaluating (/+) o (o x) o trans

¢ Apply the function to a single argument consisting of a list
of the actual arguments.

innerProduct : <<al, ...,an>,<bl,...bn>>

0 Work from right to left — o is function compostion
fog:x ==> f(g(x))
¢ Thus we execute trans first — which means the transpose
of a matrix — swap rows and columns
trans :<<al,...,an> ,<bl,...bn>>
==> <<al,bl>, <a2,b2>,..,<an,bn>>

© Gunnar Gotshalks FN2-7

Evaluating (/+) o (o x) o trans - 2

¢ Now execute (o x)

» (o x) — read as apply times to all — means apply the
function x (times) to all items in the argument list

(ax):<<al,bl>,<a2,b2>,..,<an,bn>>
==> <al xbl,a2xb2,..,anxbn>

¢ Now execute (/ +)

» (/ +) — read as reduce using + — means put the

function + (plus) between the arguments and apply
from left to right

(/+):<alxbl,a2xb2,..,an x bn>
==> alxbl+ a2xb2+... +an xbn

¢ And we have the inner product

© Gunnar Gotshalks FN2-8

Backus notation (BN) and Lisp

¢ Data structures — the list

» Lisp—(abcd)
BN —-<a,b,c,d>

> The list is a fundamental structure we will see it
again in Prolog
¢ Selector functions

» Lisp — car / first, cdr / rest
BN — tail (equivalent to rest), 1, 2, 3, ... as needed or
implemented, select item from the list

¢ Constructor functions

» Lisp — cons
BN-[f1,f2,..,f-n]-each f-i operates on the
input to produce a list as output

© Gunnar Gotshalks FN2-9

Backus notation (BN) and Lisp — 2

¢ Choice —if...then ... else ...

» Lisp—(cond (p.1 s.1-1 s.1-2 ... s.1-p)
(p-2 s.2-1 s.2-2 ... s.2-q)

(p.n s.n-1 s.n-2 ... s.n-r)

» BN - p.1 --> function.1 ; If p.1 then function.1 else
p.2 --> function.2 ;

p.n --> function.n

© Gunnar Gotshalks FN2-10

Backus notation (BN) and Lisp — 3

¢ Function application
» Lisp—(f x1...xn) (apply f(x1...xn)) (funcall f x1 ... xn)
BN- f:<x1, ..xn>
¢ Mapping functions
» Lisp—(mapf...) (mapcarf...) (maplistf...)

BN- (af)
¢ Other functions
Function
Reduction Composition Binding Constant

» Lisp—(reducefx) (compfg) (bufk) Iliteral
BN- (/f) fog (bufk) Kk

© Gunnar Gotshalks FN2-11

Inner Product — 1 argument versions

¢ Lisp recursive version
(defun innerProduct (a-b-pair)
(cond ((null (car a-b-pair))0)
(t (+ (* (caar a-b-pair) (caadr a-b-pair))
(innerProduct (list (cdar a-b-pair)
(cdadr a-b-pair)))))

)

© Gunnar Gotshalks FN2-12

Inner Product — 1 argument versions — 2

¢ Lisp functional version
(defun innerProduct (a-b-pair)
(reduce ‘+ (mapcar ‘x (first a-b-pair)
— .~ x__ (second a-b-pair))))

mapcar does transpose
due to having multiple
arguments

¢ Backus notation A

innerProduct ::= (/+) o (ax) o trans

© Gunnar Gotshalks FN2-13

Matrix multiplication

¢ Lisp 2-argument version

(defun matProd (a b)
(mapcar (bu ‘prodRow (trans b)) a))

(defun prodRow (bt r) (mapcar (bu ‘ip r)bt))
> Ip is the inner product (see previous slide)

¢ Backus notation version
matProd ::= (a o ip) o (o distl) odistr o[trans 02,1]

© Gunnar Gotshalks FN2-14

Library of functions

¢ Depending upon the application area other functions are
Created.

» For example trans — transpose a matrix

¢ Some are created using existing functionals
» For example innerProduct

© Gunnar Gotshalks FN2-15

Library of functions — 2

¢ Others are created “outside” of the system for efficiency
reasons

» For example trans may be more efficient to
implement outside of Lisp

— Although as compiler knowledge grows compilers
produce more efficient code than ‘“coding by hand”

— Machine speeds increase so many functions execute
fast enough

¢ Thefile functionals.lsp contains additional library
functions. It can be downloaded from the www resources
page for the course

© Gunnar Gotshalks FN2-16

Binding function — bu - 1

¢ @Given a binary function it is often useful to bind the first
parameter to a constant — creating a unary function

> Also called currying after the mathematician Curry
who developed the idea

» (bu ‘+ 3) — creates a unary “add 3” from the binary
function “+”

(mapcar (bu ‘+ 3) ‘(123)) ==> (456)
» Cons x before every item in a list
(mapcar (bu ‘cons ‘x) ‘(12 3)) ==> ((x.1) (x.2) (x.3))

» Note that mapcar expects a function definition as the
second argument, so we use bu to help construct the
function

© Gunnar Gotshalks FN2-17

Binding function — bu — 2

¢ We could define the function 3+
(define3+ (x) (+3x))
» and use
(mapcar ‘3+‘(123)) ==> (456)
» but this adds to our name space

¢ For use-once functions we can use lambda expressions
(mapcar #‘(lambda (x) (+ 3 x)) ‘(12 3)) ==> (45 6)
(mapcar (function
(lambda (x) (+3x))) ‘(12 3)) ==>(45 6)

© Gunnar Gotshalks FN2-18

Binding function — bu -3

¢ The previous slide solutions are seen as being clumsy and
more difficult to read compared to the following — bu has a
clear meaning — with the above you have to reverse
engineer to understand

(mapcar (bu ‘+ 3) ‘/(123)) ==> (456)

¢ Can define functions using bu
(defun 3+ (y) (funcall (bu ‘ + 3) y))
In such cases we would write
(defun 3+ (y) (+ 3 y))

We do not normally use bu to define named
functions

© Gunnar Gotshalks FN2-19

Binding function — bu -4

¢ BU is defined as follows
(defun bu (f x)
#'(lambda (y) (funcall f x y))
)
> The long form
(defun bu (f x)
(function (lambda (y) (funcall f x y)))

)

¢ BU uses a function as input and produces a function as
output

© Gunnar Gotshalks FN2-20

Binding function —bu -5

How does Lisp represent the output of bu?

In gcl (Gnu Common Lisp) you can see what takes place
» (bu ‘+ 3)
(LAMBDA-CLOSURE ((X3)(F+)) ()
((BU BLOCK #<@001E8D10>))

(Y)
(FUNCALL F X Y)

)

We see the parameter and body from the definition of bu
together with the bindings ((X 3) (F +))

The closure adds the bindings to the environment so the
body uses those bindings when it executes.

© Gunnar Gotshalks FN2-21

The Functional rev

0 rev —reverse the order of the arguments of a binary function
(defun rev (f)
#' (lambda (x y) (funcall f y x))

)

¢ Earlier we wrote
(mapcar (bu ‘cons ‘a) ‘(12 3)) ==>((a.1) (a.2) (a.3))

¢ Suppose we want ((1.a) (2.a) (3.a)) then we write
(mapcar (bu (rev ‘cons) ‘a) ‘(12 3))
==> ((1.a) (2.a) (3.a))

© Gunnar Gotshalks FN2-22

Other Functionals in the notes — 1

In functionals.lsp and the notes on functionals the
following functionals are described

(comp unaryFunction1 unaryFunction2)
> Compose two unary functions

(compl unaryFunction1 unaryFunction2 ... unaryFunctionN)
> Compose a list of unary functions

(trans matrix)
> See slides on developing functional programs

© Gunnar Gotshalks FN2-23

Other Functionals in the notes — 2

¢ (distl anltem theList)
> Distribute anltem to the left of items in theList
(distl ‘a ‘(123)) ==> ((a1)(a?2)(a3))

¢ (distr anltem thelList)
> Distribute anltem to the right of items in theList
(distr ‘a ‘(123)) ==> ((1a)(2a) (3 a))

© Gunnar Gotshalks FN2-24

