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Functional Programming

also see the notes on functionals
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History

◊ 1977 Turing1 Lecture John Backus described functional
programming
 “The problem with ‘current languages’ is that they

are word-at-a-time” 2

> Notable exceptions then were Lisp and APL
> Now ML, Haskell and others

– 1  Turing award is the Nobel prize of computer science.
– 2  “Word-at-a-time” translates to “byte-at-a-time” in

modern jargon.  A word typically held 2 to 8 bytes
depending upon the type of computer.
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Meaningful Units of Work

◊ Work with operations meaningful to the application, not to
the underlying hardware & software
» Analogy with word processing is not to work with

characters and arrays or lists of  characters
»  But work with words, paragraphs, sections,

chapters and even books at a time, as appropriate.
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Requires Abstraction

◊ Abstract out the control flow patterns

◊ Give them names to easily reuse the control pattern
» For example in most languages we explicitly write

a loop every time we want to process an array of
data

» If we abstract out the control pattern, we can think
of processing the entire array as a single operation
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Example 1

◊ Consider the inner product of two vectors
 < a1, a2, ... , an > ⊕ < b1, b2, ... , bn >

==> ( a1*b1 + a2*b2 + ... + an*bn)

◊ In Java or C/C++, the following is an algorithm
 result  = 0;
 for (i = 1 , i <= n , i++) {
     result = result + a[i]*b[i];
 }

◊ Note the explicit loop (or recursion) and introduction of
variables result, i and n (have to explicitly know the length
of the vectors
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Example 1 – FP form

◊ innerProduct  ::=   (/ +)  o  (α x)  o  trans

◊ Note the following properties of functional programs
» NO explicit loops ( or recursion)
» NO sequencing at a low level
» NO local variables

◊ In addition, functional programs have the following
properties
» functions  as input – in the above

> + (plus), x (times)
» functions as output – not shown in the above

> In FP  frequently write functions that produce a
new function using other functions as input
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Evaluating  (/ +)  o  (α x)  o  trans

◊ Apply the function to a single argument consisting of a list
of the actual arguments.
 innerProduct : < < a1, ... , an > , < b1, ... bn > >

◊ Work from right to left – o is function compostion
 f o g : x  ==>  f ( g ( x ) )

◊ Thus we execute trans first – which means the transpose
of a matrix – swap rows and columns
 trans : < < a1, ... , an >  , < b1, ... bn > >
 ==>  < < a1, b1> ,  < a2, b2 >  , ... , < an, bn > >
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Evaluating  (/ +)  o  (α x)  o  trans - 2

◊ Now execute (α ×)
» (α ×) – read as apply times to all – means apply  the

function × (times) to all items in the argument list
 (α ×) : < < a1, b1> , < a2, b2 > , ... , < an, bn > >
 ==>  < a1 × b1, a2 × b2, ... , an × bn >

◊ Now execute (/ +)
» (/ +) – read as reduce using +  – means put  the

function + (plus) between the arguments and apply
from left to right

 (/ +) : < a1 × b1, a2 × b2, ... , an × bn >
 ==>   a1 × b1 +  a2 × b2 + ...  + an × bn

◊ And we have the inner product
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Backus notation (BN) and Lisp

◊ Data structures – the list
» Lisp – ( a b c d )

BN   – < a, b, c, d >
> The list is a fundamental structure we will see it

again in Prolog

◊ Selector functions
» Lisp – car / first, cdr / rest

BN – tail (equivalent to rest), 1, 2, 3, ... as needed or
implemented, select item from the list

◊ Constructor functions
» Lisp – cons

BN – [ f-1 , f-2 , ... , f-n ] – each f-i operates on the
input to produce a list as output
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◊ Choice – if … then … else …
» Lisp – ( cond  ( p.1   s.1-1   s.1-2   ...   s.1-p )

                        ( p.2   s.2-1   s.2-2  ...   s.2-q )
                          ...
                        ( p.n   s.n-1   s.n-2  ...  s.n-r )
           )

» BN –  p.1 --> function.1  ;
        p.2 --> function.2 ;

 … ;
        p.n --> function.n

Backus notation (BN) and Lisp – 2

If p.1 then function.1 else
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Backus notation (BN) and Lisp – 3

◊ Function application
» Lisp – ( f  x1 ... xn )  ( apply f (x1 ... xn))  ( funcall f x1 ... xn)

BN –   f : < x1,  ... xn >

◊ Mapping functions
» Lisp – ( map f ... )    ( mapcar f ... )   ( maplist f ... )

BN –   ( α f )

◊ Other functions
                                     Function
           Reduction        Composition    Binding    Constant
» Lisp – ( reduce f x )    ( comp f  g )     ( bu f k )    literal
 BN –    ( / f )                  f o g                 ( bu f k )     k
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Inner Product – 1 argument versions

◊ Lisp recursive version
 (defun innerProduct ( a-b-pair )
   ( cond ( ( null  ( car  a-b-pair ) ) 0 )
               ( t  ( +  ( *  ( caar  a-b-pair ) ( caadr  a-b-pair ) )
                           ( innerProduct  ( list  ( cdar  a-b-pair)
                                            ( cdadr a-b-pair) ) ) ) )
 ))
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Inner Product – 1 argument versions – 2

◊ Lisp functional version
 ( defun  innerProduct  ( a-b-pair )
    ( reduce  ‘+   ( mapcar  ‘*  ( first   a-b-pair)
                                                ( second   a-b-pair ) ) ) )

◊ Backus notation
 innerProduct ::=  ( / + )  o  ( α x )  o  trans

mapcar does transpose
due to having multiple
arguments
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Matrix multiplication

◊ Lisp 2-argument version
 ( defun matProd ( a  b )

    ( mapcar ( bu ‘prodRow  ( trans b ) )  a ) )

(defun prodRow ( bt  r )  ( mapcar ( bu  ‘ip  r ) bt ) )
> ip  is the inner product (see previous slide)

◊ Backus notation version
matProd ::=  (α α  ip)  o  (α distl)  o distr  o [ trans o 2 , 1 ]
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Library of functions

◊ Depending upon the application area other functions are
created.
» For example trans – transpose a matrix

◊ Some are created using existing functionals
» For example innerProduct
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Library of functions – 2

◊ Others are created “outside” of the system for efficiency
reasons
» For example trans may be more efficient to

implement outside of Lisp
– Although as compiler knowledge grows compilers

produce more efficient code than “coding by hand”
– Machine speeds increase so many functions execute

fast enough

◊ The file functionals.lsp contains additional library
functions. It can be downloaded from the www resources
page for the course
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Binding function – bu – 1

◊ Given a binary function it is often useful to bind the first
parameter to a constant – creating a unary function

> Also called currying after the mathematician Curry
who developed the idea

» (bu ‘+ 3) – creates a unary “add 3” from the binary
function “+”

 (mapcar  (bu ‘+  3) ‘(1 2 3))    ==>  (4 5 6)
» Cons x before every item in a list

 (mapcar  (bu ‘cons ‘x) ‘(1 2 3))  ==>  ((x.1) (x.2) (x.3))
» Note that mapcar expects a function definition as the

second argument, so we use bu to help construct the
function
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Binding function – bu – 2

◊ We could define the function 3+
 ( define 3+  ( x )  ( + 3 x ) )

» and use
 (mapcar  ‘3+ ‘ (1 2 3))    ==>  (4 5 6)

» but this adds to our name space

◊ For use-once functions we can use lambda expressions
 (mapcar  #‘(lambda (x) (+ 3 x)) ‘(1 2 3))  ==>  (4 5 6)
 (mapcar (function
                  ( lambda (x) (+ 3 x) ) ) ‘(1 2 3)) ==> (4 5 6)
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Binding function – bu – 3

◊ The previous slide solutions are seen as being clumsy and
more difficult to read compared to the following – bu has a
clear meaning  – with the above you have to reverse
engineer to understand

 (mapcar  (bu ‘+  3) ‘(1 2 3))    ==>  (4 5 6)

◊ Can define functions using bu
 (defun 3+ (y) (funcall (bu ‘+ 3) y))

 In such cases we would write
 (defun 3+ (y) (+ 3 y))

 We do not normally use bu to define named
functions
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Binding function – bu – 4

◊ BU is defined as follows
 (defun bu (f x)
     #‘(lambda (y) (funcall f x y))
 )

> The long form
 (defun bu (f x)
     (function (lambda (y) (funcall f x y)))
 )

◊ BU uses a function as input and produces a function as
output
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Binding function – bu – 5

◊ How does  Lisp represent the output of  bu?

◊ In gcl (Gnu Common Lisp) you can see what takes place
» (bu  ‘+  3)
 (LAMBDA-CLOSURE ( ( X 3) ( F + )) ()

 ( (BU BLOCK #<@001E8D10>) )
  (Y)
  (FUNCALL F X Y)
)

◊ We see the parameter and body from the definition of bu
together with the bindings ((X 3) (F +))

◊ The closure adds the bindings to the environment so the
body uses those bindings when it executes.
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The Functional rev

◊ rev – reverse the order of the arguments of a binary function
 (defun rev (f)
     #‘ (lambda (x y) (funcall f y x))
 )

◊ Earlier we wrote
 (mapcar  (bu ‘cons ‘a) ‘(1 2 3))  ==> ((a.1) (a.2) (a.3))

◊ Suppose we want   ((1.a) (2.a) (3.a)) then we write
 (mapcar  (bu  (rev ‘cons) ‘a) ‘(1 2 3))
    ==>  ((1.a) (2.a) (3.a))
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Other Functionals in the notes – 1

◊ In functionals.lsp and the notes on functionals the
following functionals are described

◊ (comp unaryFunction1 unaryFunction2)
> Compose two unary functions

◊ (compl  unaryFunction1 unaryFunction2 ... unaryFunctionN)
> Compose a list of unary functions

◊ (trans matrix)
> See slides on developing functional programs
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Other Functionals in the notes – 2

◊ (distl anItem theList)
> Distribute anItem to the left of items in theList

 (distl  ‘a  ‘(1 2 3))  ==>  ((a 1) (a 2) (a 3))

◊ (distr anItem theList)
> Distribute anItem to the right of items in theList

 (distr  ‘a  ‘(1 2 3))  ==>  ((1 a) (2 a) (3 a))


