
FN2-1© Gunnar Gotshalks

Functional Programming

also see the notes on functionals

FN2-2© Gunnar Gotshalks

History

◊ 1977 Turing1 Lecture John Backus described functional
programming
 “The problem with ‘current languages’ is that they

are word-at-a-time” 2

> Notable exceptions then were Lisp and APL
> Now ML, Haskell and others

– 1 Turing award is the Nobel prize of computer science.
– 2 “Word-at-a-time” translates to “byte-at-a-time” in

modern jargon. A word typically held 2 to 8 bytes
depending upon the type of computer.

FN2-3© Gunnar Gotshalks

Meaningful Units of Work

◊ Work with operations meaningful to the application, not to
the underlying hardware & software
» Analogy with word processing is not to work with

characters and arrays or lists of characters
» But work with words, paragraphs, sections,

chapters and even books at a time, as appropriate.

FN2-4© Gunnar Gotshalks

Requires Abstraction

◊ Abstract out the control flow patterns

◊ Give them names to easily reuse the control pattern
» For example in most languages we explicitly write

a loop every time we want to process an array of
data

» If we abstract out the control pattern, we can think
of processing the entire array as a single operation

FN2-5© Gunnar Gotshalks

Example 1

◊ Consider the inner product of two vectors
 < a1, a2, ... , an > ⊕ < b1, b2, ... , bn >

==> (a1*b1 + a2*b2 + ... + an*bn)

◊ In Java or C/C++, the following is an algorithm
 result = 0;
 for (i = 1 , i <= n , i++) {
 result = result + a[i]*b[i];
 }

◊ Note the explicit loop (or recursion) and introduction of
variables result, i and n (have to explicitly know the length
of the vectors

FN2-6© Gunnar Gotshalks

Example 1 – FP form

◊ innerProduct ::= (/ +) o (α x) o trans

◊ Note the following properties of functional programs
» NO explicit loops (or recursion)
» NO sequencing at a low level
» NO local variables

◊ In addition, functional programs have the following
properties
» functions as input – in the above

> + (plus), x (times)
» functions as output – not shown in the above

> In FP frequently write functions that produce a
new function using other functions as input

FN2-7© Gunnar Gotshalks

Evaluating (/ +) o (α x) o trans

◊ Apply the function to a single argument consisting of a list
of the actual arguments.
 innerProduct : < < a1, ... , an > , < b1, ... bn > >

◊ Work from right to left – o is function compostion
 f o g : x ==> f (g (x))

◊ Thus we execute trans first – which means the transpose
of a matrix – swap rows and columns
 trans : < < a1, ... , an > , < b1, ... bn > >
 ==> < < a1, b1> , < a2, b2 > , ... , < an, bn > >

FN2-8© Gunnar Gotshalks

Evaluating (/ +) o (α x) o trans - 2

◊ Now execute (α ×)
» (α ×) – read as apply times to all – means apply the

function × (times) to all items in the argument list
 (α ×) : < < a1, b1> , < a2, b2 > , ... , < an, bn > >
 ==> < a1 × b1, a2 × b2, ... , an × bn >

◊ Now execute (/ +)
» (/ +) – read as reduce using + – means put the

function + (plus) between the arguments and apply
from left to right

 (/ +) : < a1 × b1, a2 × b2, ... , an × bn >
 ==> a1 × b1 + a2 × b2 + ... + an × bn

◊ And we have the inner product

FN2-9© Gunnar Gotshalks

Backus notation (BN) and Lisp

◊ Data structures – the list
» Lisp – (a b c d)

BN – < a, b, c, d >
> The list is a fundamental structure we will see it

again in Prolog

◊ Selector functions
» Lisp – car / first, cdr / rest

BN – tail (equivalent to rest), 1, 2, 3, ... as needed or
implemented, select item from the list

◊ Constructor functions
» Lisp – cons

BN – [f-1 , f-2 , ... , f-n] – each f-i operates on the
input to produce a list as output

FN2-10© Gunnar Gotshalks

◊ Choice – if … then … else …
» Lisp – (cond (p.1 s.1-1 s.1-2 ... s.1-p)

 (p.2 s.2-1 s.2-2 ... s.2-q)
 ...
 (p.n s.n-1 s.n-2 ... s.n-r)
)

» BN – p.1 --> function.1 ;
 p.2 --> function.2 ;

 … ;
 p.n --> function.n

Backus notation (BN) and Lisp – 2

If p.1 then function.1 else

FN2-11© Gunnar Gotshalks

Backus notation (BN) and Lisp – 3

◊ Function application
» Lisp – (f x1 ... xn) (apply f (x1 ... xn)) (funcall f x1 ... xn)

BN – f : < x1, ... xn >

◊ Mapping functions
» Lisp – (map f ...) (mapcar f ...) (maplist f ...)

BN – (α f)

◊ Other functions
 Function
 Reduction Composition Binding Constant
» Lisp – (reduce f x) (comp f g) (bu f k) literal
 BN – (/ f) f o g (bu f k) k

FN2-12© Gunnar Gotshalks

Inner Product – 1 argument versions

◊ Lisp recursive version
 (defun innerProduct (a-b-pair)
 (cond ((null (car a-b-pair)) 0)
 (t (+ (* (caar a-b-pair) (caadr a-b-pair))
 (innerProduct (list (cdar a-b-pair)
 (cdadr a-b-pair)))))
))

FN2-13© Gunnar Gotshalks

Inner Product – 1 argument versions – 2

◊ Lisp functional version
 (defun innerProduct (a-b-pair)
 (reduce ‘+ (mapcar ‘* (first a-b-pair)
 (second a-b-pair))))

◊ Backus notation
 innerProduct ::= (/ +) o (α x) o trans

mapcar does transpose
due to having multiple
arguments

FN2-14© Gunnar Gotshalks

Matrix multiplication

◊ Lisp 2-argument version
 (defun matProd (a b)

 (mapcar (bu ‘prodRow (trans b)) a))

(defun prodRow (bt r) (mapcar (bu ‘ip r) bt))
> ip is the inner product (see previous slide)

◊ Backus notation version
matProd ::= (α α ip) o (α distl) o distr o [trans o 2 , 1]

FN2-15© Gunnar Gotshalks

Library of functions

◊ Depending upon the application area other functions are
created.
» For example trans – transpose a matrix

◊ Some are created using existing functionals
» For example innerProduct

FN2-16© Gunnar Gotshalks

Library of functions – 2

◊ Others are created “outside” of the system for efficiency
reasons
» For example trans may be more efficient to

implement outside of Lisp
– Although as compiler knowledge grows compilers

produce more efficient code than “coding by hand”
– Machine speeds increase so many functions execute

fast enough

◊ The file functionals.lsp contains additional library
functions. It can be downloaded from the www resources
page for the course

FN2-17© Gunnar Gotshalks

Binding function – bu – 1

◊ Given a binary function it is often useful to bind the first
parameter to a constant – creating a unary function

> Also called currying after the mathematician Curry
who developed the idea

» (bu ‘+ 3) – creates a unary “add 3” from the binary
function “+”

 (mapcar (bu ‘+ 3) ‘(1 2 3)) ==> (4 5 6)
» Cons x before every item in a list

 (mapcar (bu ‘cons ‘x) ‘(1 2 3)) ==> ((x.1) (x.2) (x.3))
» Note that mapcar expects a function definition as the

second argument, so we use bu to help construct the
function

FN2-18© Gunnar Gotshalks

Binding function – bu – 2

◊ We could define the function 3+
 (define 3+ (x) (+ 3 x))

» and use
 (mapcar ‘3+ ‘ (1 2 3)) ==> (4 5 6)

» but this adds to our name space

◊ For use-once functions we can use lambda expressions
 (mapcar #‘(lambda (x) (+ 3 x)) ‘(1 2 3)) ==> (4 5 6)
 (mapcar (function
 (lambda (x) (+ 3 x))) ‘(1 2 3)) ==> (4 5 6)

FN2-19© Gunnar Gotshalks

Binding function – bu – 3

◊ The previous slide solutions are seen as being clumsy and
more difficult to read compared to the following – bu has a
clear meaning – with the above you have to reverse
engineer to understand

 (mapcar (bu ‘+ 3) ‘(1 2 3)) ==> (4 5 6)

◊ Can define functions using bu
 (defun 3+ (y) (funcall (bu ‘+ 3) y))

 In such cases we would write
 (defun 3+ (y) (+ 3 y))

 We do not normally use bu to define named
functions

FN2-20© Gunnar Gotshalks

Binding function – bu – 4

◊ BU is defined as follows
 (defun bu (f x)
 #‘(lambda (y) (funcall f x y))
)

> The long form
 (defun bu (f x)
 (function (lambda (y) (funcall f x y)))
)

◊ BU uses a function as input and produces a function as
output

FN2-21© Gunnar Gotshalks

Binding function – bu – 5

◊ How does Lisp represent the output of bu?

◊ In gcl (Gnu Common Lisp) you can see what takes place
» (bu ‘+ 3)
 (LAMBDA-CLOSURE ((X 3) (F +)) ()

 ((BU BLOCK #<@001E8D10>))
 (Y)
 (FUNCALL F X Y)
)

◊ We see the parameter and body from the definition of bu
together with the bindings ((X 3) (F +))

◊ The closure adds the bindings to the environment so the
body uses those bindings when it executes.

FN2-22© Gunnar Gotshalks

The Functional rev

◊ rev – reverse the order of the arguments of a binary function
 (defun rev (f)
 #‘ (lambda (x y) (funcall f y x))
)

◊ Earlier we wrote
 (mapcar (bu ‘cons ‘a) ‘(1 2 3)) ==> ((a.1) (a.2) (a.3))

◊ Suppose we want ((1.a) (2.a) (3.a)) then we write
 (mapcar (bu (rev ‘cons) ‘a) ‘(1 2 3))
 ==> ((1.a) (2.a) (3.a))

FN2-23© Gunnar Gotshalks

Other Functionals in the notes – 1

◊ In functionals.lsp and the notes on functionals the
following functionals are described

◊ (comp unaryFunction1 unaryFunction2)
> Compose two unary functions

◊ (compl unaryFunction1 unaryFunction2 ... unaryFunctionN)
> Compose a list of unary functions

◊ (trans matrix)
> See slides on developing functional programs

FN2-24© Gunnar Gotshalks

Other Functionals in the notes – 2

◊ (distl anItem theList)
> Distribute anItem to the left of items in theList

 (distl ‘a ‘(1 2 3)) ==> ((a 1) (a 2) (a 3))

◊ (distr anItem theList)
> Distribute anItem to the right of items in theList

 (distr ‘a ‘(1 2 3)) ==> ((1 a) (2 a) (3 a))

