Lambda Calculus

LC-1



A Calculus History

Developed by Alonzo Church during 1930’s-40’s

One fundamental goal was to describe what can be
computed.

Full definition of A-calculus is equivalent in power to a
Turing machine

» Turing machines and A-calculus are alternate
descriptions of our understanding of what is
computable

LC-2



A Calculus History — 2

¢ In the mid to late 1950’s, John McCarthy developed Lisp
» A programming language based on A-calculus
» Implementation includes syntactic sugar

> functions and forms that do not add to the
power of what we can compute but make
programs simpler and easier to understand

LC-3



- Calculus Basis

¢ Mathematical theory for anonymous functions
» functions that have not been bound to names

¢ Present a subset of full definition to present the flavour

¢ Notation and interpretation scheme identifies
» functions and their application to operands
> argument-parameter binding

» Clearly indicates which variables are free and
which are bound

LC-4



Bound and Free Variables

¢ Bound variables are similar to local variables in Java
function (or any procedural language)

» Changing the name of a bound variable
(consistently) does not change the semantics
(meaning) of a function

¢ Free variables are similar to global variables in Java
function (or any procedural language)

» Changing the name of a free variable normally
changes the semantics (meaning) of a function.

LC-5



A-functions — 1

¢ Consider following expression
»(u+1)(u-1)
» is u bound or free?

¢ Disambiguate the expression with the following A-function
»(Au . (u+1)(u-1))
~

bound variables defining form

» Clearly indicates that u is a bound variable

¢ Note the parallel with programming language functions
» functionName ( arguments ) { function definition }

— It seems obvious now but that is because programming
languages developed out of these mathematical notions

LC-6



A-functions — 2

¢ Consider the following expression
»(u+a)(u+b)

¢ Can have any of the following functions, depending on
what you mean

» (AU . (u+a)(u+b))

> U is bound, a and b are free (defined in the
enclosing context)

» (Au,b . (u+a)(u+b))
> u and b are bound, a is free
» (Au,a,b . (u+a)(u+b))

> U, a and b are all bound, no free variables in the
expression

LC-7



Function application

¢ Functions are applied to arguments in a list immediately
following the I-function

»{Au.(u+1)(u+2)}[3]
>3==>uthen==>(3+1)(3+2)==>20
»{Au.(u+a)(u+b)}[7-1]

>7-1==>uthen==>(6+a)(6+b)
and no further in this context

»{Au,v.(u=v)(u+v)} [2p+q,2p-q]
>==>((2p+q)-(2p-q))((2p +q) +(2p—q))
> Can pass expressions to a variable

¢ Can use different bracketing symbols for visual clarity;
they all mean the same thing.

LC-8



Using auxiliary definitions

¢ Build up longer definitions with auxiliary definitions

» Define u/(u+5)
where u=a(a+1)
where a=7-3

{Au .u/(u+b5)}[{ra.a(a+1)}[7-3] ]

> Note the nested function definition and
argument application

==>{7\,U U/(U+5)}[4(4+1)]
==>{20/(20+5)}
==>0.8

LC-9



Functions are Variables

¢ Define f(3) +
where f( )
<+

f(5)
ax(a+x)
where

{AT . f(3) fB)}[{ra.{Ax.ax(a+x)}}[4]]

¢ Arguments must be evaluated first
==>{Af .f(3)+f(B)}[{AX.4x(4+Xx)}]

==>{AX.4x(4+x)} (3 + {Ax.4x(4+x)} (5)

==> 4*3(4+3) +4*5(4+5) ==> 264

LC-10



Lamba notation in Lisp

¢ Lambda expressions are a direct analogue of A-calculus
expressions

» They are the basis of Lisp functions — a modified
syntax to simplify the interpreter
¢ For example
(defun double (x) (+ x x))

> Is the named version of the following unnamed
lambda expression

(lambda(x) (+ x x)) — {AXx.(x+Xx)}

> Note the similar syntax with A-calculus and the
change to prefix, from infix, to permit a uniform
syntax for functions of any number of
arguments

LC-11



Anonymous functions

¢ Recall in the abstraction for sumint we defined support
functions to handle each case

(defun double (int) (+ int int))
(defun square (int) (* int int))
(defun identity (int) int)

¢ This adds additional symbols we may not want, especially
iIf the function is to be used only once.

¢ Using lambda we get the same effect without adding
symbols
(sumint #‘(lambda (int) (+ int int)) 10)
(sumint #‘(lambda (int) (* int int)) 10)
(sumint #‘(lambda (int) int) 10)

LC-12



The function ‘function’

What is the meaning of #’ in the following
(sumint #‘(lambda (int) (+ int int)) 10)

It is a short hand
» #"(e..) ==> (function (...))

One of its attributes is it works like quote, in that its
argument is not evaluated, thus, in this simple context the
following will also work

(sumint ‘(lambda (int) (+ int int)) 10)

Later we will see another attribute of function that makes
it different from quote.

Whenever a function is to be quoted use #’ in place of ’

LC-13



Recursion

¢ Recursion with lambda functions uses labels to
temporarily name a function

0 The following is a general A-calculus template.

> The name is in scope within the entire body but is
out of scope outside of the lambda expression.

{ label name ( lambda arguments .
body_references_name ) }

¢ In Lisp can use labels to define a mutually recursive set of
functions

( labels (list of named lambda expressions)
sequence of forms using the temporarily named

functions

LC-14



Example 1 of recursion

¢ A recursive multiply that uses only addition.
> The temporary function is called mult
> Use quote not function — using eval

(eval '(labels
((mult (k n)
(cond ((zerop n) 0)
(t (+ k (mult k (1- n))))

)))
(mult 2 3)

LC-15



Example 2 of recursion

¢ recTimes computes k * n by supplying the paramters to
a unary function that is a variation of example 1.

(defun recTimes (k n)
(labels (( temp (n)
(cond ((zerop n) 0)
(t (+ k (temp (1- n))))
)))
(temp n)
))

LC-16



