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Lambda Calculus
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λ− Calculus History

◊ Developed by Alonzo Church during 1930’s-40’s

◊ One fundamental goal was to describe what can be
computed.

◊ Full definition of λ-calculus is equivalent in power to a
Turing machine
» Turing machines and λ-calculus are alternate

descriptions of our understanding of what is
computable
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λ− Calculus History – 2

◊ In the mid to late 1950’s, John McCarthy developed Lisp
» A programming language based on λ-calculus
» Implementation includes syntactic sugar

> functions and forms that do not add to the
power of what we can compute but make
programs simpler and easier to understand
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λ− Calculus Basis

◊ Mathematical theory for anonymous functions
» functions that have not been bound to names

◊ Present a subset of full definition to present the flavour

◊ Notation and interpretation scheme identifies
» functions and their application to operands

> argument-parameter binding
» Clearly indicates which variables are free and

which are bound



LC-5© Gunnar Gotshalks

Bound and Free Variables

◊ Bound variables are similar to local variables in Java
function (or any procedural language)
» Changing the name of a bound variable

(consistently) does not change the semantics
(meaning) of a function

◊ Free variables are similar to global variables in Java
function (or any procedural language)
» Changing the name of a free variable normally

changes the semantics (meaning) of a function.
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◊ Consider following expression
» ( u + 1 ) ( u – 1 )
»  is u bound or free?

◊ Disambiguate the expression with the following λ-function
» ( λ u   .   ( u + 1 ) ( u – 1 ) )

» Clearly indicates that u is a bound variable

◊ Note the parallel with programming language functions
» functionName  ( arguments ) { function definition }

– It seems obvious now but that is because programming
languages developed out of these mathematical notions

λ−functions – 1

bound variables defining form
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λ−functions – 2

◊ Consider the following expression
» ( u + a ) ( u + b )

◊ Can have any of the following functions, depending on
what you mean
» ( λ u  .  ( u + a ) ( u + b ) )

> u is bound, a and b are free (defined in the
enclosing context)

» ( λ u, b  .  ( u + a ) ( u + b ) )
> u and b are bound, a is free

» ( λ u, a, b  .  ( u + a ) ( u + b ) )
> u, a and b are all bound, no free variables in the

expression
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Function application

◊ Functions are applied to arguments in a list immediately
following the l-function
» { λ u . ( u + 1 ) ( u + 2 ) } [ 3 ]

> 3 ==> u then ==> (3 + 1) (3 + 2) ==> 20
» { λ u . ( u + a ) ( u + b ) } [ 7 – 1 ]

> 7–1 ==> u then ==> ( 6 + a ) ( 6 + b )
and no further in this context

» {λ u, v . ( u – v ) ( u + v ) }  [ 2p + q , 2p - q ]
> ==> ( (2p+q) – (2p - q) ) ( (2p + q) + (2p – q) )
> Can pass expressions to a variable

◊ Can use different bracketing symbols for visual clarity;
they all mean the same thing.
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Using auxiliary definitions

◊ Build up longer definitions with auxiliary definitions
» Define  u / ( u + 5 )

where  u = a ( a + 1 )
    where  a = 7 – 3

 { λ u  . u / ( u + 5 ) }  [ { λ a . a ( a + 1 ) }  [ 7 – 3 ]   ]

> Note the nested function definition and
argument application

 ==> { λ u  . u / ( u + 5 ) } [ 4 ( 4 + 1 ) ]
 ==> { 20 / ( 20 + 5 ) }
 ==> 0.8
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Functions are Variables

◊ Define   f ( 3 )  +  f ( 5 )
    where   f ( x ) = a x ( a + x )
        where   a = 4
 { λ f  . f (3) + f (5) } [ { λ a . { λ x . a x ( a + x ) } } [ 4 ] ]

◊ Arguments must be evaluated first
 ==> { λ f  . f (3) + f (5) } [ { λ x . 4 x ( 4 + x ) } ]

 ==> { λ x . 4 x (4 + x ) }  (3)  +  { λ x . 4 x (4 + x ) }  (5)

 ==>  4 * 3 ( 4 + 3 )  + 4 * 5 ( 4 + 5 )   ==>  264
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Lamba notation in Lisp

◊ Lambda expressions are a direct analogue of λ-calculus
expressions
» They are the basis of Lisp functions – a modified

syntax to simplify the interpreter

◊ For example
 ( defun double ( x )  ( +  x  x ) )

> is the named version of the following unnamed
lambda expression

 ( lambda ( x )  ( +  x  x ) )    –––     { λ x . ( x + x ) }
> Note the similar syntax with λ-calculus and the

change to prefix, from infix, to permit a uniform
syntax for functions of any number of
arguments
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Anonymous functions

◊ Recall in the abstraction for sumint we defined support
functions to handle each case
 (defun double (int) (+ int int))

 (defun square (int) (* int int))

 (defun identity (int) int)

◊ This adds additional symbols we may not want, especially
if the function is to be used only once.

◊ Using lambda we get the same effect without adding
symbols
 (sumint #‘(lambda (int) (+ int int)) 10)

 (sumint #‘(lambda (int) (* int int)) 10)

 (sumint #‘(lambda (int) int) 10)
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The function ‘function’

◊ What is the meaning of  #’ in the following
 (sumint #‘(lambda (int) (+ int int)) 10)

◊ It is a short hand
» #’(...)  ==>  (function (...))

◊ One of its attributes is it works like quote, in that its
argument is not evaluated, thus, in this simple context the
following will also work
 (sumint ‘(lambda (int) (+ int int)) 10)

◊ Later we will see another attribute of function that makes
it different from quote.

◊ Whenever a function is to be quoted use #’ in place of ’
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Recursion

◊ Recursion with lambda functions uses labels to
temporarily name a function

◊ The following is a general λ-calculus template.
> The name is in scope within the entire body but is

out of scope outside of the lambda expression.

{ label name ( lambda arguments  .
                                   body_references_name ) }

◊ In Lisp can use labels to define a mutually recursive set of
functions
 ( labels  (list of named lambda expressions)

    sequence of forms using the temporarily named
    functions
)



LC-15© Gunnar Gotshalks

Example 1 of recursion

◊ A recursive multiply that uses only addition.
> The temporary function is called mult
> Use quote not function – using eval

 (eval '(labels
            ((mult (k n)
              (cond ((zerop n) 0)
                    (t (+ k (mult k (1- n))))
            )))
         (mult 2 3)
       )
 )
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Example 2 of recursion

◊ recTimes computes  k * n  by supplying the paramters to
a unary function that is a variation of example 1.

 (defun recTimes (k n)
   (labels (( temp (n)
              (cond ((zerop n) 0)
                    ( t (+ k (temp (1- n))))
           )))
   (temp n)
 ))


