
BLO-1© Gunnar Gotshalks

Basic Lisp Operations



BLO-2© Gunnar Gotshalks

Function invocation

◊ It is an S-expression – just another list!

          ( function  arg1 arg2 ... argN)

◊ First list item is the function – prefix notation

◊ The other list items are the arguments to the function.

◊ Arguments can themselves be lists

» (+  1  2  3  (+  4  5  6)  7  8  9 ) ==> 45

» Outer + has 7 arguments, inner + has 3 arguments

» Arguments are evaluated before the function



BLO-3© Gunnar Gotshalks

Basic Functions

◊ List access & creation

» car  or first  – access first in list

» cdr  or rest  – access all but first

» cons  – construct a list cell

◊ Other

» quote   or ' – take literally, do not interpret

» atom  – true if argument is an atom

» eq – true if arguments are same object

» cond  – conditional
          generalized “if ... then ... else ....”

Can build Lisp out of these functions



BLO-4© Gunnar Gotshalks

List access functions

car / first cdr / rest
List Cell

Original name

Modern name

( car  '( a b c ) )  ≡  ( first '( a b c ) ) ≡ a

( cdr  '( a b c ) )  ≡  ( rest '( a b c ) ) ≡ ( b c )

Pronounced as
could-er



BLO-5© Gunnar Gotshalks

CAR and CDR – Structural View 1

( A  B  C  D )

CAR = A
CDR = ( B C D )

A

nilD

Copies
pointer

Copies
pointer

C

B



BLO-6© Gunnar Gotshalks

CAR and CDR – Structural View 2

( A  . B )

CAR = A
CDR = B 

A

Copy
pointer Copy

pointer
B



BLO-7© Gunnar Gotshalks

( car '( a b c ) ) – why the quote?

◊ Recall that arguments are evaluated before the function

◊ If we wrote – ( car  ( a b c) )

» argument  ( a b c ) would be evaluated before the 
car

» a would be a function call

» but we literally want the list (a b c) not the result of 
evaluating a on the arguments b and c.

◊ '(...) is syntactic sugar for (quote ... ) where Lisp treats the 
function quote  as a special function whose arguments are 
not evaluated first

( car  '( a b c ) )  ≡  ( car  ( quote ( a b c ) ) )



BLO-8© Gunnar Gotshalks

Why the names CAR and CDR?

◊ Original Lisp developed for an IBM 704 computer which 
had 18 bit registers

◊ Pairs of registers could be handled as a single 36 bit 
‘word’

address register decrement register

CAR ≡ Contents  Address  Register 

CDR ≡ Contents  Decrement  Register  

one word = one lisp cell



BLO-9© Gunnar Gotshalks

Short hand for nested car's and cdr's

Accessing deeper into Lisp structures occurs so frequently
that additonal functions are introduced into Lisp.

For example

( cdddar ... ) ≡ (cdr ( cdr ( cdr (car ... ))))

Interpret from right to left

Length depends upon the implementation.



BLO-10© Gunnar Gotshalks

Creating a New Lisp Cell – cons

◊ Only one constructor function 
– cons

◊ Copies pointers to the 
arguments

 

◊ Laws

» (car (cons A B))  =  A

» (cdr (cons A B))  =  B

A 

B( cons  A  B )

Copy
pointer

Copy
pointer



BLO-11© Gunnar Gotshalks

◊ Cons is expensive as it creates a new cell

» memory allocation is invoked

> But it is non destructive – no side effects

 

◊ For efficiency Common Lisp provides a set of destructive 
operations – they change lists

» ( replca cell newValue )  &  ( replcd cell newValue )

> Replace the car  and cdr  fields of cell  with 
ponters to newValue

» ( nconc x y )

> Replace the cdr  field of the last component of x 
with a pointer to y

Destructive List Construction

Following is dangerous – do not use in the course!



BLO-12© Gunnar Gotshalks

SETQ – Define a symbol value

◊ (setq x value)

» If the symbol x does not exist it is created

» Symbol x is given the value value

◊ In this course USE ONLY AT THE GLOBAL LEVEL to 
create symbols required to test your programs

◊ Example

» (setq x ‘(1+  4))  sets the value of x to the list (1+  4)

» Note the x is not quoted but the second argument 
is if you do not want to evaluate it.



BLO-13© Gunnar Gotshalks

Compare SET and SETQ

◊ ( setq  x  ‘y )

» x has the value y

◊ ( set  x  ‘z )

» x still has the value y

» but a new symbol y is created with the value z

» why?

◊ See the notes on symbols



BLO-14© Gunnar Gotshalks

DEFUN – define a function

◊ ( defun  functionName  ( argumentList  )

     List of S-expressions to evaluate when the
    function is invoked – usually only one
    S-expression
)

– Example

 ( defun  add  ( a  b )  (+  a  b ) )

◊ Value of the function is the value of the last
S-expression that is executed

◊ Functions in Lisp are typically small

» rarely more than 1/2 a page in length


