Basic Lisp Operations

BLO-1

Function invocation

¢ Itis an S-expression — just another list!
(function argl arg2 ... argN)
¢ First list item is the function — prefix notation
¢ The other list items are the arguments to the function.

¢ Arguments can themselves be lists
»((H+ 123 (+456)789)==>45
» Quter + has 7 arguments, inner + has 3 arguments
» Arguments are evaluated before the function

BLO-2

Basic Functions

Can build Lisp out of these functions

¢ List access & creation
» car or first — access first in list
» cdr or rest — access all but first
» cons — construct a list cell

¢ Other
» quote or ' — take literally, do not interpret
» atom — true if argument is an atom
» eq — true if arguments are same object

» cond — conditional
generalized “if ... then ... else”

BLO-3

List access functions

.. Pronounced as
Original name

/ \ / could-er
List Cell / \
car / first cdr / rest
\ /

N\ /

Modern name

(car (abc))= (first'(abc))=a
(cdr (abc))= (rest'(abc))E=(bc)

BLO-4

CAR and CDR - Structural View 1

>
o
O
,

CDR=(BCD)

A/'opies

pointer

CAR=A * \
C

Copies
pointer

BLO-5

CAR and CDR - Structural View 2

(A .B)
CAR=A «
CDR =B
Copy
pointer ?T Copy
pointer
A B

BLO-6

(car'(abc))—why the quote?

Recall that arguments are evaluated before the function

If we wrote —(car (abc))

» argument (ab c) would be evaluated before the
car

» a would be a function call
» but we literally want the list (a b ¢) not the result of
evaluating a on the arguments b and c.

'(...) Is syntactic sugar for (quote ...) where Lisp treats the
function quote as a special function whose arguments are
not evaluated first

(car '(abc))= (car (quote (abc)))

BLO-7

Why the names CAR and CDR?

¢ Original Lisp developed for an IBM 704 computer which
had 18 bit registers

¢ Pairs of registers could be handled as a single 36 bit
‘word’

one word = one lisp cell

address registe decrement register

CAR = Contents Address Register

CDR = Contents Decrement Register

BLO-8

Short hand for nested car's and cdr's

Accessing deeper into Lisp structures occurs so frequently
that additonal functions are introduced into Lisp.

For example

(cdddar ...)= (cdr (cdr (cdr (car ...))))

x Interpret from right to left

Length depends upon the implementation.

BLO-9

Creating a New Lisp Cell — cons

Only one constructor function

— Ccons
A"
Copies pointers to the
arguments Copy
pointer
Laws
» (car (consAB)) = A
» (cdr (consAB)) = B
(consA B)

Copy
pointer B

BLO-10

Destructive List Construction

¢ Cons Is expensive as it creates a new cell
» memory allocation is invoked
> But it Is non destructive — no side effects

Following is dangerous — do not use in the course!

¢ For efficiency Common Lisp provides a set of destructive
operations — they change lists

» (replca cell newValue) & (replcd cell newValue)

> Replace the car and cdr fields of cell with
ponters to newValue

» (nconc xy)

> Replace the cdr field of the last component of X

with a pointerto vy
BLO-11

SETQ — Define a symbol value

¢ (setq x value)
» If the symbol X does not exist it is created
» Symbol X is given the value value

¢ In this course USE ONLY AT THE GLOBAL LEVEL to
create symbols required to test your programs

¢ Example
» (setq x ‘(1+ 4)) sets the value of X to the list (1+ 4)

» Note the X is not quoted but the second argument
IS If you do not want to evaluate fit.

BLO-12

Compare SET and SETQ

O (setg x ‘y)
» X has the value y
O (set x ‘z)
» X still has the value y

» but a new symbol y is created with the value z
» why?

¢ See the notes on symbols

BLO-13

DEFUN — define a function

¢ (defun functionName (argumentList)

List of S-expressions to evaluate when the
function is invoked — usually only one
S-expression

)

— Example
(defun add (a b) (+ a b))

¢ Value of the function is the value of the last
S-expression that is executed

¢ Functions in Lisp are typically small
» rarely more than 1/2 a page in length

BLO-14

