Lisp Data Structures

LS-1

Lisp Good Points

¢ Consistent structure for data and programs

» Both are lists

¢ Clean design for ‘Pure’ Lisp

» Common Lisp not so clean — lot of operational

features

¢ Promotes modular programming through lots of small

functions.

LS-2

Lisp Bad Points

Excessive use of parenthesis can make it difficult to
understand

» Lots of Insignificant Silly Parenthesis

Prefix for all operators makes arithmetic clumsy
» But for everything else matches procedure calls

Lambda calculus underpinning can be difficult for
beginners to understand

LS-3

Data Structures

¢ Atoms
» Essentially simple, but ...

» can have a complex internal structure

> see notes on symbols

¢ Lists
» Actually binary trees
» Only binary cells

4

N\

4

Point to
list or atom

N

Point to
list or atom

LS-4

Dotted Notation

Most general notation

Directly encodes list
structures

Parenthesis pair denote a
cell with a dot separating the

two parts of the cell

Recursive definition

> 1
o

(A.B)

LS-5

Dotted notation example

/
nil D
I I B (vj nvil
v oy
A nil
(((.B).nil). (.D))

((((A.nil).B).nil).((C.nil).D))

LS-6

S-expressions

Most common structure is a list l \
Simplify by removing the A R
‘redundant’ dots and parenthesis I
B
(AB CD) M
Instead of l l

A.(B.(C.(D.nil))))

LS-7

S-expressions — example 1

List with sublists
((AB)C(DEF)G)

Dotted notation F il
((A.(B.mnil)).(C.((D.(E.(F.nil))).(G.nil))))

LS-8

S-expressions — example 2

May contain dotted
notation

nil
List of dotted pairs G H

((AeB)(CeD)(EeF)(G.H))

LS-9

S-expressions cont’d

0 The empty list is
nil =()

¢ Itis both an atom and a list !

LS-10

Dotted => S-expression

Apply the following rules from right to left

1 Replace .nil) with)
» end of a list

» (A.nil) -—--> (A)
2 Replace .(..) with ‘space’...
» end of a list

»(A.(B.C))-->(A B.C)
» What is the length of the above list?

LS-11

Example dotted => S-expr

Can apply rule 1 in three places
((A.(B.nil)).(C.((D.(E.(F.nil))).(G.nil))))
((A.(B)).(C.((D.(E.(F))).(G))))

Can apply rule 2 in three places

((A.(B)).(C.((D.(E.(F))).(G))))
((AB).(C.((D.(EF))G)))

Successive applications of rule 2
((AB).(C.((D.(EF))G)))
((AB).(C.((DEF)G)))
((AB).(C(DEF)G))
((AB)C(DEF)G)

LS-12

