
1

Register Transfer Level

ECE470

RTL
• A digital system is represented at the register

transfer level by these three components
1. The set of registers in the system
2. The operation that are performed on the data stored

in the registers
3. The control that supervises the sequence of

operations in the system.
• The operations executed on the information

stored in the registers are elementary
operations and performed in parallel during
one clock cycle.

2

RTL

• Comma is used to separate 2 or more
operations that are executed in the same
time
If(T3=1) then (R2←R1, R1←R2)

• That is possible with registers that have
edge triggered flip-flop

RTL in HDL
assign s=A+B;

always @(A or B)
s=A+B;

always @ (posedge clock)
begin

RA=RA+RB;
RD=RA;

end

always @ (negedge clock)
begin

RA<=RA+RB;
RD<=RA;

end

Blocking procedural
assignment, new value of
RA is assigned to RD

Non-blocking procedural
assignment, old value of
RA is assigned to RD

Continuous assignment,
for combinational
circuits only, output can
not be a reg

3

HDL Operations

• Arithmetic: + - * / %
• Logic (bit wise): ~ & | ^
• Logical ! && ||
• Shift >> << { , }
• Relational > < == != >= <=
• In shifting, the vacant bits are filled with

zeros

Loop Statements

•
integer count

initial

begin

count = 0;

while (count <0)

#5 count = count+1;

end

initial

begin

clock = 1’b0;

end

repeat (16)

#5 clock = ~ clock;

end

4

Loop Statements
module decoder

input [1:0] IN;

output [3:0]Y;

reg [3:0]Y;

integer I;

always @(IN)

for (I=0; I<=3; I=I+1)

if (IN == I) Y[I}=1;

else Y[I}=0;

endmodule

assign Y=s ? L1: L0;

Or

always @(L1 or L0 or S)

if (S) Y=I1;

else Y=I0;

5

Algorithmic State Machine (ASM)

Data processing
path, manipulates
data in registers

Initiates a sequence of
commands to the
datapath, may use status
conditions from the
datapath

ASM

• ASM is similar to flowchart in the sense
that it specifies a sequence of procedural
steps and decision paths for an algorithm.

• However, ASM is interpreted differently
than a flowchart. While the flow chart is
interpreted as a sequence of operations,
ASM describes the sequence of events as
well as the timing relationship between the
states (as we will see shortly).

6

The state is given a symbolic name (T3)

Binary code for the assigned state (011)

The operations that are performed in this state R←0; and START could
be an output signal is generated to start some operation

The operation is performed when we leave T3 to the next state

State Box

Decision Box

7

Conditional Box
Input to the conditional
box must come from one
of the exit paths of a
decision box.

The register operation or
outputs listed inside the
conditional box are
generated during a given
state, if the input condition
is satisfied of course

ASM

• The operation in the state box
or conditional box are nott
executed in the current state.

• Rather, a control signal is
asserted in the current state if
Q0 is 1 and the operation is
done at the transition from this
state to the next one (with the
next clock cycle)

MUL0

10 Q0

A←A+B
C ←Cout

8

ASM Block

ASM block is a structure consisting of one
state box and all the decision and
conditional boxes connected to its exit path.

Each block in the ASM describes the state
of the system during one clock-pulse
interval.

The operations within the state and
conditional boxes are executed at the clock
pulse when the system is leaving T1 to T2,
T3, or T4

One entrance

If flow chart, A is incremented, then E
is tested

Timing Consideration

9

Design Example
• Design a system with 2 flip-flops E and F, and one 4

bit binary counter (A4, A3, A2, A1).
• A start signal initiates the operation by clearing A and

F.
• Then the counter is incremented by one starting from

the next clock pulse and continues to increment until
the operation stops. A3 and A4 determine the
operations.

– If A3 = 0, E is cleared and continue
– If A3=1, E is set; then if A4=0 continue, if A4=1 F is set to 1 on

the next clock cycle and the system stops.

F is set to 1 in the next
clock cycle, must be a
separate state

BLOCK

BLOCK

BLOCK

10

Counter Flip-Flops

A4 A3 A2 A1 E F Condition State
0 0 0 0 1 0 A3=0, A4=0 T1
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0

0 1 0 0 0 0 A3=1, A4=0
0 1 0 1 1 0
0 1 1 0 1 0
0 1 1 1 1 0

1 0 0 0 1 0 A3=0,A4=1
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 0

1 1 0 0 0 0 A3=1,A4=1

1 1 0 1 1 0 T2

1 1 0 1 1 1 T0

Timing Sequence

• That illustrates the difference between ASM and
flowchart.
– When the system is in state 1011, It checks A3 is 0,

so it sets E to 0 and increment counter to 1100, the
next cycle will start with 1100 and E set to 0.

– Then checks A3 and A4 (both are 1), it sets E to 1,
and increments counter.

– Next cycle counter is 1101, and E=1 and now it is in
state 2

– Then it set F to 1 and goes to state 0

11

Datapath Design

• The requirements for the design of the
datapath are specified in the state and
conditional boxes.

• The control logic is determined from the
decision and the required state transition.

• A look at the datapath design of the
previous example.

Datapath design

• In state T0, clear the counter and the F flip-
flop (the and gate and f inputs).

• In state T1, if A3=0, set E←0 (will
generate 01 on the JK inputs of E if the
state is T1).

• In state T1, if A3A4=10; E ←0 (note the
inputs of E).

• In state T2, if A3A4=11, F ← 1, and (the F-
F is set).

12

Sometimes it is useful to separate the control operation from the register
transfer of the datapath.

The state diagram represents the control sequence; while the register
transfer operation represents what happens in every state.

13

State Table

• The state diagram can be converted into a
state table.

• Three states (T0, T1, and T2), represents
as the output of two registers (G1 G0) as
00, 01, and 11.

• The following table shows the state table
for the previous example.

Present State Inputs next State Outputs

Present (symbol) G1 G0 S A3 A4 G1 G0 T0 T1 T2

T0 0 0 0 X X 0 0 1 0 0

T0 0 0 1 X X 0 1 1 0 0

T1 0 1 X 0 X 0 1 0 1 0

T1 0 1 X 1 0 0 1 0 1 0

T1 0 1 X 1 1 1 1 0 1 0

T2 1 1 X X X 0 0 0 0 1

T0=G0’

T1=G1’G0

T2=G1

DG1=T1A3A4

DG2=T0S+T1

14

HDL Description

• The description could be one three different
levels
– Behavioral description on the RTL level
– Behavior description on the algorithmic level
– Structural description

• Note that the algorithmic level, is used only to
verify the design ideas in the early stages. Some
of the constructs might not be synthesizable

• Following RTL behavior description

15

• //RTL description of design example module
Example_RTL (S,CLK,Clr,E,F,A);

• //Specify inputs and outputs
• //See block diagram Fig. 8-10
• input S,CLK,Clr;
• output E,F;
• output [4:1] A;
• //Specify system registers
• reg [4:1] A; //A register
• reg E, F; //E and F flip-flops
• reg [1:0] pstate, nstate; //control register
• //Encode the states
• parameter T0 = 2'b00, T1 = 2'b01, T2 =

2'b11;
• //State transition for control logic
• //See state diagram Fig. 8-11(a)
• always @(posedge CLK or negedge Clr)
• if (~Clr) pstate = T0; //Initial state
• else pstate <= nstate; //Clocked

operations

• always @ (S or A or pstate)
• case (pstate)
• T0: if(S) nstate = T1;
• T1: if(A[3] & A[4]) nstate = T2;
• T2: nstate = T0;
• default: nstate = T0;
• endcase
• //Register transfer operatons
• //See list of operations Fig.8-11(b)
• always @(posedge CLK)
• case (pstate)
• T0: if(S)
• begin
• A <= 4'b0000;
• F <= 1'b0;
• end
• T1:
• begin
• A <= A + 1'b1;
• if (A[3]) E <= 1'b1;
• else E <= 1'b0;
• end
• T2: F <= 1'b1;
• endcase
• endmodule

Testing

• Note that because we used non-blocking
assignment we did not have to worry
about the order of the statements in every
state.

• Had we used a blocking assignment, we
have to worry about the order.

16

Testing
• //HDL Example 8-3
• //------------------------------
• //Test bench for design example
• module test_design_example;
• reg S, CLK, Clr;
• wire [4:1] A;
• wire E, F;
• //Instantiate design example
• endmodule

• Example_RTL dsexp
(S,CLK,Clr,E,F,A);

• initial
• begin
• Clr = 0;
• S = 0;
• CLK = 0;
• #5 Clr = 1; S = 1;
• repeat (32)
• begin
• #5 CLK = ~ CLK;
• end
• end
• initial
• $monitor("A = %b E = %b F =

%b time = %0d", A,E,F,$time);

Structural Description

17

Structural Description
• //HDL Example 8-4
• //----------------------------------
• //Structural description of design

example
• //See block diagram Fig. 8-10
• module Example_Structure

(S,CLK,Clr,E,F,A);
• input S,CLK,Clr;
• output E,F;
• output [4:1] A;
• //Instantiate control circuit
• control ctl

(S,A[3],A[4],CLK,Clr,T2,T1,Clear);
• //Instantiate E and F flip-flips
• E_F EF (T1,T2,Clear,CLK,A[3],E,F);
• //Instantiate counter
• counter ctr (T1,Clear,CLK,A);
• endmodule

• //Control circuit (Fig. 8-12)
• module control

(Start,A3,A4,CLK,Clr,T2,T1,Clear);
• input Start,A3,A4,CLK,Clr;
• output T2,T1,Clear;
• wire G1,G0,DG1,DG0;
• //Combinational circuit
• assign DG1 = A3 & A4 & T1,
• DG0 = (Start & ~G0) | T1,
• T2 = G1,
• T1 = G0 & ~G1,
• Clear = Start & ~G0;
• //Instantiate D flip-flop
• DFF G1F (G1,DG1,CLK,Clr),
• G0F (G0,DG0,CLK,Clr);
• endmodule

Structural Description
• //D flip-flop
• module DFF (Q,D,CLK,Clr);
• input D,CLK,Clr;
• output Q;
• reg Q;
• always @ (posedge CLK or

negedge Clr)
• if (~Clr) Q = 1'b0;
• else Q = D;
• endmodule

• //E and F flipf-lops
• module E_F

(T1,T2,Clear,CLK,A3,E,F);
• input T1,T2,Clear,CLK,A3;
• output E,F;
• wire E,F,JE,KE,JF,KF;
• //Combinational circuit
• assign JE = T1 & A3,
• KE = T1 & ~A3,
• JF = T2,
• KF = Clear;
• //Instantiate JK flipflop
• JKFF EF (E,JE,KE,CLK),
• FF (F,JF,KF,CLK);
• endmodule

18

Structural Description
• //JK flip-flop
• module JKFF (Q,J,K,CLK);
• input J,K,CLK;
• output Q;
• reg Q;
• always @ (posedge CLK)
• case ({J,K})
• 2'b00: Q = Q;
• 2'b01: Q = 1'b0;
• 2'b10: Q = 1'b1;
• 2'b11: Q = ~Q;
• endcase
• endmodule

• //counter with synchronous
clear

• module counter
(Count,Clear,CLK,A);

• input Count,Clear,CLK;
• output [4:1] A;
• reg [4:1] A;
• always @ (posedge CLK)
• if (Clear) A<= 4'b0000;
• else if (Count) A <= A +

1'b1;
• else A <= A;
• endmodule

Binary Multiplier
• We did this before

using combinational
circuit (adders,
gaters, ..).

• Use one adder and
shift registers.

• Instead of shifting
multiplicand to the
left, shift the partial
product to the right.

23 10111

19 10011

10111

10111

00000

00000

10111

437 110110101

19

Binary Multiplier

• Assume that the multiplicand in B, and the
multiplier in Q.

• P contains n the length of the multiplier

20

Partial product is
shifted one bit at a
time into Q and
eventually replaces
the multiplier

A ← shr A, An-1 ← C

Q ← shrQ,Qn-1 ← A0

C ← 0

Mistake an
arrow from T3
to T2 if Z=0

21

State Table

Present State Inputs next State Outputs

G1 G0 S Z G1 G0 T0 T1 T2 T3

0 0 0 X 0 0 1 0 0 0

0 0 1 X 0 1 1 0 0 0

0 1 X X 1 0 0 1 0 0

1 0 X X 1 1 0 0 1 0

1 1 X 0 1 0 0 0 0 1

1 1 X 1 0 0 0 0 0 1

Controller Design

• We can use conventional sequential circuit
design for the controller, if we did using 2
D type Flip-Flops

DG1=G1G’0 + G0 G’1 +G1Z’

DG0=SG’0 + G1 G’0

11?11?
?11?

11?
11?

G1

G0

Z

S

22

Z is a status signal that
checks P for 0.

Sequence Register and Decoder

• If the number of variables is large, conventional
design is difficult.

• Need specialized methods for the control
design.

• Uses a register to control the states, and a
decoder to provide an output corresponding to
each of the states.

• A register with n flip-flops can have up to 2n

states, and n-to-2n line decoder has up to 2n

outputs.

23

Sequence Register and Decoder

• The circuit could be obtained directly from
the table by inspection (keep in mind that
the states are available as inputs).

• Directly from the table, there are three 1’s
for G1, which means

200

3211

TSTD
ZTTTD

G

G

+=
++=

24

One Flip-Flop per State

• We need n flip-flops for every state
• In this case, we need 4 flip-flops.
• The circuits are very simple to implement

and can be obtained directly from the state
diagram.

• For example, we move from state 0 to 1 if
S=1 which means DT1=T0S

One Flip-Flop per State

23

312

01

300

TD
ZTTD

STD
ZTSTD

T

T

T

T

=
+=

=
+=

25

Design with multiplexers

• The previous design consists of flip-flops,
decoder, and gates.

• Replacing gates with multiplexers results
in a regular pattern of the design.
– First level contains multiplexers (possibly

added gates, but only one level.
– The second level is the registers to hold the

present state information
– The last stage has a decoder that provides a

separate output for every state

26

Multiplexer input condition
Present State next State I/P inputs

G1 G0 G1 G0 cond. MUX1 MUX2

0 0 0 0 w’

0 0 0 1 w 0 w

0 1 1 0 x

0 1 1 1 x’ 1 x’

1 0 0 0 y’

1 0 1 0 yz’ yz’+yz=y yz

1 0 1 1 yz

1 1 0 1 y’z

1 1 1 0 y y+y’z=y+z y’z+y’zy=y’

1 1 1 1 y’z’

27

Counting the number of 1’s

• The system counts the number of 1’s in
R1, and set R2 accordingly.

• The bits in R1 are shifted one at a time,
checking if the shifted out bit is 1 or 0, and
incrementing R2

• Z is a signal to indicate if R1 contains all
0’s or not.

• E is the output of the flip-flop (the shifted
out bit).

28

?

E could not be checked
in the same block as T2
since the shift to E will
not happen unstill the
end of the cucle.

29

Control (counting of 1’s)

Present Next Conditions MUX inputs

State State

G1 G0 G1 G0 MUX1 MUX2

0 0 0 0 S’

0 0 0 1 S 0 S

0 1 0 0 Z

0 1 1 0 Z’ Z’ 0

1 0 1 1 1 1

1 1 1 0 E’

1 1 0 1 E E’ E

30

31

