Chapter 5

Synchronous Sequential Logic

Chapter 5

Introduction

- Circuits require memory to store intermediate data
- Sequential circuits use a periodic signal to determine when to store values.
 - A clock signal can determine storage times
 - Clock signals are periodic
- Single bit storage element is a flip flop
- A basic type of flip flop is a atch
- Latches are made from logic gates
 - NAND, NOR, AND, OR, Inverter

Chapter 5

Synchronous vs. Asynchronous

- Synchronous sequential circuit is a system whose behavior can be defined from the knowledge of its signal at discrete instants of time
- Asynchronous sequential circuit is a system whose behavior can be defined from the knowledge of its signals at any point of time

Chapter 5

Cross Coupled Inverters

SR Latch using NOR

°S-R latch made from cross-coupled NORs

°If Q = 1, set state

°If Q = 0, reset state

°Usually S=0 and R=0

°S=1 and R=1 generates unpredictable results

SR latch using NAND

Q'
1 Disallowed
0 Set
0 Set1 Reset
¹ Store

- Latch made from cross-coupled NANDs
- Sometimes called S'-R' latch
- Usually S=1 and R=1
- S=0 and R=0 generates unpredictable results

SR Latch R (Reset) $RQ\overline{Q}$ Set state Reset state Undefined S (Set) (a) Logic diagram (b) Function table S (Set) Set state Reset state Undefined R (Reset) (b) Function table (a) Logic diagram Chapter 5 8

D Latch

Chapter 5

11

D Latch

- One wat to avoid the indeterminate state in the SR latch when both S and R are This is done by inverting S and having the inverted S as R.
- As long as C=0, no change. If C=1 D is delivered to Q and D' to Q' C D Q Q'

0 X Q Q'
1 1 1 0
1 0 0 1

Chapter 5

Flip-Flops

- The state of the latch or flip-flop is switched by a change in the control input, this is called a *trigger*
- The D latch with pulses in its control input. As long as the pulse input is 1, any changes in the D input is transferred to the output.
- When the state of the latch changes, if the control pulse is still at logic 1, any changes to the input (possible a feedback from the output) will change the output.
- Because of this, the output of a latch can not be applied directly to the input of this or other latches

Flip-Flop

- A better way is if the flip-flop is triggered during the transition of the control input.
- A clock pulse goes through 2 transitions, $1 \rightarrow 0$ and $0 \rightarrow 1$.
- The first is called –ve edge, the second is positive edge.
- There are two ways to implement this, either by using master-salve or by special design of the circuit.

Chapter 5

Edge-Triggered Flip-Flop (Master-Slave) Do Do latch (master) CLK CLK

Fig. 5-9 Master-Slave D Flip-Flop

Any changes in the input can affect only Y as long as CLK=1; After CLK=0, Y propagates to Q, byt the master is locked.

Characteristic Tables

• Characteristic tables Describes the operation of the flip-flop in a tabular form

JK Flip Flop		D Fl	ip Flop	F Fli	F Flip Flop		
J K	Q(t+1)	D	Q(t+1)	T	Q(t+1)		
0 0	Q(t)	0	0	0	Q(t)		
0 1	0	1	1	1	Q'(t)		
1 0	1	,		'			
1 1	Q'(t)						

Chapter 5

Characteristic Equation

• For D Flip-Flop

$$Q(t+1)=D$$

• For JK Flip-Flop

$$Q(t+1)=JQ'+K'Q$$

• For T Flip-Flop

$$Q(t+1)=T \oplus Q = TQ' + T'Q$$

Chapter 5

Analysis of Clocked Sequential Circuits

- State equation, state table
- State diagram: states are represented by circuits, transitions by arcs labeled I/O
- Flip-Flop Equations:

State Table

- Sequence of outputs, inputs, and flip flop states enumerated in state table
- Present state indicates current value of flip flops
- Next state indicates state after next rising clock edge
- Output is output value on current clock edge

State Table

- All possible input combinations enumerated
- All possible state combinations enumerated
- Separate columns for each output value.
- Sometimes easier to designate a symbol for each state.

	Present	Next	State	Outp	out
Let:	State	x=0	x=1	x=0	x=1
$s_0 = 00$	s_0	s_0	s_2	0	0
$s_1 = 01$	\mathbf{s}_1	s_2	s_2	0	0
$s_2 = 10$	s_2	s_0	s_3	0	0
$s_3 = 11$	s_3	s_2	s_3	0	1

Chapter 5

Present	Next	State	Output		
State	x=0	x=1	x=0	x=1	
0.0	00	10	0	0	
0.1	10	10	0	0	
1 0	00	11	0	0	
1 1	10	11	0	1	

State Diagram

- ° Each state has two arrows leaving
 - $^{\circ}$ One for x = 0 and one for x = 1
- ° Unlimited arrows can enter a state
- ° Note use of state names in this example
 - ° Easier to identify

Chapter 5

	J-K	K Flip	Flop			
Present	Input	Next	F	ip-Flo	p Inp	uts
A B	X	A B			J_{B}	
0 0	0	0 1	0	0	1	0
0 0	1	0 0	0	0	0	1
0 1	0	1 1	1	1	1	0
0 1	1	1 0	1	0	0	1
1 0	0	1 1	0	0	1	1
1 0	1	1 0	0	0	0	0
1 1	0	0 0	1	1	1	1
1 1	1	1 1	1	0	0	0
		Chapter 5				32

33

Mealy and Moore Models

- Mealy model: the output is a function of both the present state and the input.
- Moore model: The output is a function of the present state only.
- In a Moore model, the output is synchronized with the clock (since it changes only if the state changes).
- In a Mealy model the output may change if the input changes during the clock cycle.

HDL For Sequential Circuits

Chapter 5

Behavioral Modeling

 iitial
 initial

 begin
 begin

 clock=1'b0;
 clock = 1'b0;

 repeat(30)
 #300 \$finish;

#10 clock = ~clock end; end always

#10 clock=~clock;

Behavioral Modeling

- One ways to use always statement always @ (A or B or reset)
- What fellows will be done if any changes in A, B, or reset,
- Or, we can use

Always @ (posedge clock or negedge reset)

Chapter 5

Behavioral Modeling

• Blocking assignment

B=A; C=B+1;

- A is assigned to B, and the new value is incremented
- Non-blocking assignment

B<=A; C<=B+1;

• Incrementing old value of A, because assignment is done after all the values in the block are done

Flip-Flops and Latches

```
//D Flip-Flop
//Description od D latch
                                         \boldsymbol{module}\; D\_FF(Q,\,D,\,CLK);
module D_Latch (Q,D,control);
                                            output Q;
  output Q;
                                            input D, CLK;
  input D, control;
                                            reg Q;
  reg Q;
                                            always @ (posedge CLK)
  always @ (control or D)
                                              Q=D;
  if (control) Q=D;
                                         endmodule
endmodule
```

Chapter 5 3

Flip-Flops and Latches

```
//D Flip-Flop with Asynchronous reset

module DFF(Q,D,CLK,RST);

output Q;
input D, CLK,RST;

reg
always @(posedge CLK or negedge RST);
if(~RST) Q=1'b0;
else Q=D;
endmodule

Only if RST=1 can posedge clock
event synchronously D->Q

Chapter 5
```

Other Types of Flip-Flop

```
// Flip-Flop (using D)
                                //JK Flip-Flop (using D)
Module TFF(Q,T,CLK,RST);
                                Module JKFF(Q,T,CLK,RST);
Output Q;
                                Output Q;
Input T,CLK,RST;
                                Input JK,CLK,RST;
Wire DT;
                                Wire JK;
Assign DT=Q^T;
                                Assign JK=(J\&\sim Q) \mid (\sim k\&Q);
DFF TF1(Q,DT,CLK,RST);
                                DFF JK1(Q,JK,CLK,RST);
endmodule
                                endmodule
                            Chapter 5
```

Other Types of Flip-Flop

```
//Functional Description of JK Flip-Flop
Module JK_FF(J,K,CLK,Q,Qnot);
output Q,Qnot;
input J,K,CLK;
reg Q;
assign Qnot=~Q
\verb"allways" @ (posedge CLK)"
       case ({J,K})
         2'b00: Q=Q;
         2'b01: Q=1'b0;
         2'b10: Q=1'b1;
         2'b11: Q=~Q;
       endcase
endmodule
                 Chapter 5
                                                 42
```

```
State Diagram
//Mealy state diagram
                                                                always @ (Prstate or x)
\boldsymbol{module}\; Mealy\_Model(x,y,CLK,RST);
                                                                 case(Prstate)
 input x,CLK,RST;
                                                                            s0: y=0;
 output y;
                                                                            S1: if (x) y=1'b0; else y=1'b1;
 reg y;
reg [1:0] Prstate, Nxtstate;
                                                                            S2: if (x) y=1/b0; else y=1'b1;
                                                                            S3: if (x) y=1'b0; else y=1'b1;
 parameter S0=2'b00, s1=2'b01, s2=2'b10, S3=2'b11;
                                                                 endcsde
 always @ (posedge CLK or negedge RST)
                                                                endmodule
            if(\sim RST) Prstate = S0;
            else Prstate=Nxtstate;
 always @ (Prstate or x)
            case(Prstate)
                        S0: if(x) Nxtstate = S1;
                                    else Nxtstate = S0;
                        S1: if (x) Nxtstate = S3;
                                    else Nxtstate = S0;
                        S2: if (x) Nxtstate = S0;
                                     \textbf{else}\ Nxtstate = S2;
                        S3: if(x) Nxtstate = S2;
                                    else Nxtstate = S0;
            endcase
                                               Chapter 5
                                                                                                     43
```

```
State Diagram
//Moore state diagram
module Mealy_Model(x,AB,CLK,RST);
input x,CLK,RST;
 output [:0]AB;;
 reg [1:0] State;
 parameter S0=2'b00, s1=2'b01, s2=2'b10, S3=2'b11;
 always @ (posedge CLK or negedge RST)
            if(\sim RST) Prstate = S0;
            else Prstate=Nxtstate;
 always @ (Prstate or x)
           case(Prstate)
                       S0: \mathbf{if}(\sim x) State = S1;
                                   else State = S0;
                       S0: if (x) State = s2;
                                   else State = S3;
                       S0: if (x) State = S3;
                                   else State = S2;
                       S0: if(x) State = S0;
                                   else State = S3;
           endcase
assign AB=State;
                                             Chapter 5
                                                                                                44
endmodule
```

Structural Description

Structural Description

```
//test fixture for the previous design
module testTFF;
            reg x, CLK, RST;
           wire y,A,B;
TCircuit (x,y,A,B,CLK,RST);
           initial
                        begin
                           RST=0;
                           CLK=0;
                        #5 RST = 1;
                           repeat (16);
                        #5 CLK= ~CLK;
                        end
           initial
                        begin
                        x=0;
#15 x=1;
                        repeat (8);
                        #10 x=~x
                        end;
endmodule
                                          Chapter 5
                                                                                               46
```

State Reduction and Assignment

- In this part, we study some properties of the sequential circuits in order to reduce the number of gates or flip-flops.
- If we have *m* flip-flops, we can have up tp 2^m states.
- Thus reducing the number of states, may result in reduction of the number of flip-flops.
- Sometimes, we care only about the output produced by a specific input sequence, while in others (counters) the states are important (considered as the output).

Chapter 5 47

State Reduction and Assignment

- There are infinite number of sequences that could be applied to the circuit, producing some output.
- B
 - Two circuits (may have different states) will produce the same output for the same input are considered equivalent (from the input output point of view).
 - We want to find a way to reduce the number of states and keeping the same input-output equivalence.

State reduction

	next	state	Outp	out
Present State	x=0	x=1	x=0	x=1
a	a	b	0	0
b	c	d	0	0
c	a	d	0	0
d	e	f	0	1
e	a	f	0	1
f	g	f	0	1
g	a	f	0	1

look for any two state that go to the same next state and have the same output for both input combination (states g and e), remove one and replace it by the other

State Assignment

- In this stage, you have to map states to binary numbers. You can use any mapping scheme.
 - binary
 - Gray code
 - one-hot (more flip-flops)

Chapter 5 5

Design Procedure

- From the word description Derive the state diagram
- Reduce the number of states if necessary
- Assign Binary values to states.
- Obtain the binary-coded state table
- Choose the type of flip-flop
- Derive the simplified flip-flop input and output equations
- Draw the logic diagram

Design

• Design a circuit that detects three or more consecutive ones.

State table for sequence detector

Synthesis with D Flip-Flops

• Construct the state table

$$A(t+1) = D_{A}(A, B, X) = \sum_{ABX} (3,5,7)$$

$$B(t+1) = D_{B}(A, B, x) = \sum_{ABX} (1,5,7)$$

$$y(A, B, x) = \sum_{ABX} (6,7)$$

$$D_{A} = Ax + Bx$$

$$D_{B} = Ax + B'x$$

$$y = AB$$

Chapter 5

Synthesis with D Flip-Flops

Fig. 5-26 Logic Diagram of Sequence Detector

Chapter 5

Synthesis with J-K Flip-Flop

• With J-K flip-flop, it is not as easy as D, since the output is not the same as the previous input, we need an excitation table

Q(t)	Q(t+1)	J	K	Q(t)	Q(t+1)	T
0	0	0	X	0	0	0
0	1	1	X	0	1	1
1	0	X	1	1	0	1
1	1	X	0	1	1	0
			(Chapter 5		

Example: Odd Number of 1's

Assert output whenever input bit stream has odd # of 1's

Present State	Input	Next State	Output
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

Note: Present state and output are the same value

Chapter 5

Odd Number of 1's

Example: Odd Parity Checker

Next State/Output Functions

NS = PS xor PI; OUT = PS

Chapter 5

Vending Machine

- □Deliver package of gum after 15 cents deposited
- □Single coin slot for dimes, nickels
- □No change
- □Design the FSM using combinational logic and flip flops

Chapter 5

65

Reuse states whenever possible

Present State	Inputs D N	Next State	Output Open
0¢	0 0	0¢	0
	0 1	5¢	0
	1 0	10¢	0
	1 1	Х	X
5¢	0 0	5¢	0
	0 1	10¢	0
	1 0	15¢	0
	1 1	X	X
10¢	0 0	10¢	0
	0 1	15¢	0
	1 0	15¢	0
	1 1	X	Χ
15¢	ХХ	15¢	1

Symbolic State Table

Chapter 5

Present State Q ₁ Q ₀	Inputs D N	Next State D ₁ D ₀	Output Open
0 0	0 0	0 0	0
	0 1	0 1	0
	1 0	1 0	0
	1 1	X X	X
0 1	0 0	0 1	0
	0 1	1 0	0
	1 0	1 1	0
	1 1	X X	X
1 0	0 0	1 0	0
	0 1	1 1	0
	1 0	1 1	0
	1 1	X X	X
1 1	0 0	1 1	1
	0 1	1 1	1
	1 0	1 1	1
	1 1	X X	X

Chapter 5

Chapter 5

68

3-Bit Binary Counter

Present State	Next State	T-F Inputs
A ₂ A ₁ A ₀ 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1	A ₂ A ₁ A ₀ 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1 1	Chapter 5	1 1 1

3-Bit Binary Counter

Fig. 5-30 Maps for 3-Bit Binary Counter

Chapter 5 72

Example (Mealy vs. Moore)

- Design a circuit that asserts its output for one cycle for every change in the input from 0 to 1
- We will try two different approaches.
- Compare between them

