Digital Logic Design

Week 4

Combinational Design

Outline

- Combinational Circuits
- Analysis Procedure
- Design Procedure
- Adders and multipliers
- Comparators
- Decoders and Encoders
- Multiplexers
- HDL For Combinational Circuits

Combinational Circuits

- What is a combinational circuit?
- What is the difference between combinational and sequential circuits
- Implementation MSI and standard cells in ASIC

Analysis Procedure

1. Label all gate outputs that are a function of input variables with arbitrary symbols. Find the Boolean function of these gates
2. Label all the gates that are functions of input variables and previously labeled gates with arbitrary symbols. Find the Boolean function of these gates.
3. Repeat step 3 until the outputs of all the gates are labeled
4. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables (or truth table)

Analysis Procedure

Design Procedure

1. From the specification of the circuit. Determine the required number of input and output and assign a symbol to each.
2. Derive the truth that defines the required relationship between inputs and outputs.
3. Obtain the simplified Boolean expressions for each output as a function of the input variables.
4. Draw the logic diagram and verify the correctness of the design.

- Example: BCD to Excess-3 Code Converter.

Binary Adder-Subtractor

- Half adder: $S=x^{\prime} y+x y^{\prime}, C=x y$

Full Adder

x	y	z	c	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder

Binary Adder

Carry Propagation

- The value of S_{i} depends on the current A_{i} and $B i$ and $\mathrm{C}_{\mathrm{i}} . \mathrm{C}_{\mathrm{i}}$ depends on $\mathrm{A}_{\mathrm{i}-1}$, and $\mathrm{B}_{\mathrm{i}-1}$, and so on.
- That means the carry propagates across all the digits in the two numbers to be added.
- Carry propagation time is a limiting factor on the speed of addition (basic operation in virtually everything).
- S_{i} 's will not be ready at the same time
- We need to speed-up addition

Carry Propagation

Carry Lookahead

- G_{i} is called the carry Generator, and P_{i} is the carry propagate.
- We can calculate the carry at every stage by recursively substituting C_{i}
$\mathrm{C}_{0}=$ input carry
$\mathrm{C}_{1}=\mathrm{G}_{0}+\mathrm{P}_{0} \mathrm{C}_{0}$
$\mathrm{C}_{2}=\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{C}_{1}=\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{0}$
$\mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{C}_{2}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{0}$
Circuit in Figure 4-11

Fig. 4-11 Logic Diagram of Carry Lookahead Generator

Fig. 4-12 4-Bit Adder with Carry Lookahead

Overflow

- When adding two n-bits number, the answer has a maximum of $n+1$ bits.
- If the numbers are represented in the computer by n bits, the $\mathrm{n}+1^{\text {st }}$ bit is an overflow.
- Usually the overflow is detected and reported to the user.

Decimal Adder

	nary	Sum				D	Sum			Decimal
K	Z8	Z4	Z2	Z1	K	Z8	Z4	Z2	Z1	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0		1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19
Week3										

Decimal Adder

- The output of the BCD could be anything between 0 and 19 (9+9+carry).
- From the truth table, it is clear that there is a carry (BCD carry) if any one of the following occurs

1. $\mathrm{K}=11$ (if the number is greater than 16).
2. $Z_{8}=1$ and $Z_{4}=1$
3. If $Z_{8}=1$ and $Z_{2}=1$

- If there is a carry, we must add 6 to the binary number to get the BCD code.
- That leads to the following circuit

Decimal Adder

Binary Multiplier

- First, consider 2 bit multiplier

Week3

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier

Magnitude Comparator

- Assume that we want to design a magnitude comparator for 2 4-bit numbers.
- Direct implementation of this requires a truth table with $2^{8}=256$ entries.
- It is easier to understand the algorithm by which we compare two numbers, that leads to a much less complicated design process.
- Assume the 2 numbers are represented as $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$ and $\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$
- The algorithm works as follows

Magnitude Comparator

- The two numbers are equal iff all the bits in the 2 numbers are equal. That leads to a design of 4EX-OR followed by inverter (actually ex-nor) and an or gate.
- For A to be greater than B, we must have $A_{i}>B_{i}$ and $A_{i}=B_{i j} j>i$.
- So, we start at digit 3, compare A_{3} and B_{3}, either one is greater or they are equal we move to A_{2} and B_{2} and so on.
- If we define x_{i} to be the ex-nor of A_{i} and B_{i} i.e. x_{i} is 1 if $A_{i}=B_{i}$

Magnitude Comparator

- In this case,
- ($\mathrm{A}=\mathrm{B}$) $=\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{0}$
- (A>B) $=\mathrm{A}_{3} \mathrm{~B}_{3}{ }_{3}+\mathrm{x}_{3} \mathrm{~A}_{2} \mathrm{~B}^{\prime}{ }_{2}+\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{~A}_{1} \mathrm{~B}^{\prime}{ }_{1}+\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{~A}_{0} \mathrm{~B}^{\prime}{ }_{0}$
- $(A \& B)$ replace the prime from B to A.
- Circuit is shown in Figure 4-17

Fig. 4-17 4-Bit Magnitude Comparator

Decoders

- A decoder is a combinational circuit that converts binary information from n inputs to a maximum of 2^{n} outputs.
- A decode is called n-to- m decoder, where $m \leq 2^{n}$
- Consider 3-8 decoder, truth table with 3 inputs x, y, z and 8 outputs $D_{7} . . D_{0}$ the circuit is shown in Figure 4-18

Decoders

- From truth table, circuit for 2×4 decoder is:
- Note: Each output is a 2-variable minterm ($\mathbf{X ' Y}^{\prime} \mathbf{Y}^{\prime}, \mathbf{X} \mathbf{Y}, \mathbf{X Y}$ ' or $\mathbf{X Y}$)

Decoders

Decoders

- Some decoders are implemented using NAND gates, in this case it will be more economical to produce the output in their complemented form.
- 2-4 decoder
- Circuit 4-19
- When E is 1 , non

Of the outputs I 0

- Decoder may be Activated With E=0 or 1

E	A	B	D_{0}	D_{1}	D_{2}	D_{3}
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

Decoders

(a) Logic diagram

(b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

Decoders

- A decoder with an Enable input can function as a demultiplexer
- A demultiplexer is a circuits that receives data from a single line, and direct it to a possible of 2^{n} lines (example sharing a communication line).
- The decoder in the previous slide can function as a demultiplexer if we consider E to be the data and A, and B to be the input selection.
- Verify this by assuming selection 10 and determine the output (always equal to E).

Decoders

- Decoders with enable can be connected together to form a larger decoder

Decoders

- Any n-variable logic function can be implemented using a single n-to- 2^{n} decoder to generate the minterms
- OR gate forms the sum.
- The output lines of the decoder corresponding to the minterms of the function are used as inputs to the or gate.
- Any combinational circuit with n inputs and m outputs can be implemented with an n-to-2 ${ }^{n}$ decoder with m OR gates.
- Suitable when a circuit has many outputs, and each output function is expressed with few minterms.

Decoders

- Decoders can be used to implement logic functions.
- Consider the function $S(x, y, z)=\Sigma(0,1,3)$ and $C(x, y, z)=\Sigma(4,2)$
- Verify this by stating what will be the output if the input is any of the different combination in
 the truth table

Standard MSI Binary Decoders Exampl

 74138 (3-to-8
(a)
(a) Logic circuit.
(b) Package pin configuration.
(c) Function table.

Week3

Encoders

- Encoders perform the reverse operation of a decoder.
- An encoder has up to 2^{n} input lines, and n output lines.
- The encoder generates the binary code corresponding to the active input line.
- Truth table with 8 variables and three outputs, only need 1 in every row
- $x=D_{1}+D_{3}+D_{5}+D_{7} ; y=D_{2}+D_{3}+D_{6}+D_{7}$;
$Z=D_{4}+D_{5}+D_{5}+D_{7}$

Encoders

Priority Encoders

- Priority encoders are encoders with a certain priority scheme.
- If more than one input is active, the one with the higher priority is encoded.
- The following figure shows the truth table for a priority encoder.
- Note than there is a valid bit. The valid bit indicates if the output is valid or not, if non of the input is active, the V bit is 0 , means nothing is active

Priority Encoders

- What if more than one input line has a value of $\mathbf{1 ?}$
- Ignore "lower priority" inputs.
- Idle indicates that no input is a 1.
- Note that polarity of Idle is opposite from Table 4-8 in Mano

Inputs								Outputs			
I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}		y_{1}		dle
0	0	0	0	0	0	0	0	X	X	x	1
1	0	0	0	0	0	0	0		0	0	0
X	1	0	0	0	0	0	0	0	0	1	0
X	X	1	0	0	0	0	0		1	0	0
X	X	X	1	0	0	0	0		1	1	0
X	X	X	X	1	0	0	0		0	0	0
X	X	X	X	X	1	0	0		0	1	0
X	X	X	X	X	X	1	0		1	0	0
X	X	X	X	X	X	X	1		1		0

Priority encoders

- Assign priorities to the inputs
- When more than one input are asserted, the output generates the code of the input with the highest priority
- Priority Encoder :

$\begin{aligned} & \text { Encoder } \\ & Y 0=11+13+ \\ & Y 1=12+13+ \end{aligned}$

Priority Encoders

Priority Encoders

- Encoder identifies the requester and encodes the value
- Controller accepts digital inputs.

Summary

- Decoder allows for generation of a single binary output from an input binary code
- For an n-input binary decoder there are 2^{n} outputs
- Decoders are widely used in storage devices (e.g. memories)
- We will discuss these in a few weeks
- Encoders all for data compression
- Priority encoders rank inputs and encode the highest priority input

Multiplexers

- A multiplexer is a combinational circuit that accepts binary information from one of many input lines and directs it to the output line.
- Which input to accept information from is selected by the selection lines.
- Usually there are n selection lines and 2^{n} input lines.
- A multiplexer can be combined with a common selection to select multiple bit selection, and Enable to control the operation. Figure 4-26 shows a quadruple 2-1 line multiplexer.

Multiplexers

S

Figure 4-25

Function Implementation

- We can consider the multiplexer to be a decoder that include the OR gates within.
- The OR minterms are generated by the function associated with the selection inputs.
- The rule to implement a function is as follows:

Function Implementation

- Assume that we have n variables
- Choose $\mathrm{n}-1$ of them to be the selection lines of a 2^{n-1}-to-1 multiplexer.
- The selection lines chooses one of 2^{n-1} inputs.
- These inputs corresponds to the the truth table $\left(2^{n}\right)$ entries taken 2 entries at a time.
- Assume the $\mathrm{n}^{\text {th }}$ variable is Z .
- These 2^{n-1} entries each is $Z, Z^{\prime}, 0$, or 1
- According to the entry number, the corresponding input is one of these 4 values. 427 and 4-28

x	y	z	F	
0	0	0	0	$F=z$
0	0	1	1	
0	1	0	1	$\quad F=z^{\prime}$
0	1	1	0	
1	0	0	0	$F=0$
1	0	1	0	
1	1	0	1	$F=1$
1	1	1	1	

(a) Truth table

(b) Multiplexer implementation

Fig. 4-27 Implementing a Boolean Function with a Multiplexer

Fig. 4-28 Implementing a 4-Input Function with a Multiplexer

Three States gates

- The figure shows a three state buffer

$$
Y=\left\{\begin{array}{cc}
Y=A & \text { if } C=1 \\
Y=\text { High } Z & \text { if } C=0
\end{array}\right.
$$

Input A

Control Input C

Multiplexers with three-state gates

HDL for Combinational Circuits

- A module in Verilog can be described in any one of the following modeling techniques
- Gate-level modeling using instantiation of primitive gates and user-defined modules.
- Dataflow modeling using continuous assignment statements with assign
- Behavioral modeling using procedural assignment statements with always

Verilog (gate-level)

- In gate level we have the following primitive gates (and, nand, or, nor xor, xnor, not, buf)
- The system assigns four-valued logic to every gate ($0,1, z, x$).
- The truth tables for the 4 most used gates is shown in the next slide

Verilog

and	01 x z	Or	01 x	
0	0000	0	- 1 x	x
1	01 xx	1	111	1
x	$0 \times \mathrm{x} x$	x	x 1 x	x
z	$0 \times \mathrm{x} x$	z	x 1 x	x
		not	Input	output
xor	$01 \times z$		0	1
0	0100		1	0
1	10 xx		X	X
x	$\mathrm{x} \times \mathrm{x} \mathrm{x}$		z	X

Verilog 2-4 line decoder

```
//gate-level description of a 2-4 line decoder
module decoder_g1(A,B,E,D);
    input A,B,E;
    output [0:3]D;
    wireAnot, Bnot, Enot;
    not
        n1(Anot,A),
        n2(Bnot,B),
        n3(Enot,E);
nand
            n1(D[0],Anot,Bnot,Enot),
            n2(D[1],Anot,B,Enot),
            n3(D[2],A,Bnot,Enot),
            n4(D[3],A,B,Enot);
endmodule
```


Three-state Gates

notif0(Y,B,enable);

Three State Gates

Select

Dataflow Modeling

//Dataflow modeling of a 2-4 line decoder
module decoder_df (A, B, E, D);
input A, B, E; output [0:3] D;
assign $D[0]=\sim(\sim A \& \sim B \& \mathbb{E})$, $D[1]=\sim(\sim A \& B \& \sim E)$, $D[2]=\sim(A \& \sim B \& \sim E)$, $D[3]=\sim(A \& B \& \sim E) ;$
endmodule

Dataflow Modeling

//Dataflow modeling of a 4-bit adder module binary_adder (A,B,C_in,SUM,C_OUT); input [3:0]A,B;
input C_in;
output [3:0] SUM;
output C_out;
assign $\left\{\mathrm{C} _\right.$out,SUM $\}=\mathrm{A}+\mathrm{B}$;
endmodule

Dataflow Modeling

//Dataflow Modeling of a 4-bit comparator
module magcomp ($\mathrm{A}, \mathrm{B}, \mathrm{ALSB}, \mathrm{AGTB}, \mathrm{AEQB}$);
input [3:0] A, B;
output ALTB, AGTB,AEQB;
assign $A L T B=(A<B)$, AGTB $=(A>B)$, $A E Q B=(A==B) ;$
endmodule

Dataflow Modeling

//Dataflow model for a 2-to-1 mux module mux 2×1 _df(A, B, select, OUT); input A, B, select;
output OUT;
assign OUT= select? A : B;
endmodule

behavioral description

//Behavioral description of a 2-1 line MUX module mux2_1 (A,B,select,OUT);
input A, B, select;
output OUT;
reg OUT;
always @ (select or A or B)
if (select == 1) OUT = A; else OUT=b;
endmodule

Simulation (Test Bench)

- A test bench is a program for applying simulation to an HDL design.
- initial statements are executed at time 0
- always statements are executed always
- test module has no input or outputs
- The signals that are applied to the design module are declared as reg.
- The output of the design modules are declared as wire.

4-to-1 MUX

- Description of a 4-to-1 MUX using conditional
- operators:
module mux4to1 (w0, w1, w2, w3, S, f);
input w0, w1, w2, w3;
input [1:0] S;
output f;
assign $f=\mathrm{S}[1]$? (S[0] ? w3 : w2) : (S[0] ? w1 : w0); endmodule
module mux4to1 (W, S, f); input [0:3] W; input [1:0] S;
output f;
reg f;
always @(*)
if ($\mathrm{S}==0$
$\mathrm{f}=\mathrm{W}[0]$;
else if ($S==1$)
$\mathrm{f}=\mathrm{W}[1]$;
else if ($S==2$)
$\mathrm{f}=\mathrm{W}[2]$;
else if $(S==3)$
$\mathrm{f}=\mathrm{W}[3]$;
endmodule

Description of a 4-to-1 MUX using a case statement: module mux4to1 (W, S, f);
input [0:3] W; input [1:0] S; output f;
reg f;
always @(*)
case (S)

$$
0: f=W[0] ;
$$

1: $f=W[1] ;$
2: $\mathrm{f}=\mathrm{W}[2]$;
$3: f=W[3] ;$
endcase
endmodule

```
            Verilog description of a priority encoder:
module priority ( \(\mathrm{W}, \mathrm{Y}, \mathrm{z}\) );
input [3:0] W;
output [1:0] Y;
output z ;
reg [1:0] Y ;
\(\operatorname{reg} \mathrm{z}\);
always @(*)
            begin
            \(z=1 ;\)
            casex (W)
                4'b1xxx: Y = 3;
                4'b01xx: \(Y=2\);
                4'b001x: \(Y=1\);
                4'b0001: \(Y=0\);
                    default: begin
                                    \(z=0\);
                                    \(Y=2\) 'bxx;
                    end
                    endcase
            end
    endmodule

Verilog description of a 16-to-1 MUX constructed as a tree of 4-to-1 decoders:
module mux16to1 (W, S, f, M); input [0:15] W; input [3:0] S; output f; output [3:0] M; wire [0:3] M; mux4to1 Mux1 (W[0:3], S[1:0], M[0]); mux4to1 Mux2 (W[4:7], S[1:0], M[1]); mux4to1 Mux3 (W[8:11], S[1:0], M[2]); mux4to1 Mux4 (W[12:15], S[1:0], M[3]); mux4to1 Mux5 (M[0:3], S[3:2], f);
endmodule```

