

Decimal Adder							
Binary Sum K Z8 Z4 Z2 Z1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 <th>BCD Sum K Z8 Z4 Z2 Z1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 <</th> <th>Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19</th> <th></th>	BCD Sum K Z8 Z4 Z2 Z1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 <	Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19					

What if mo				-			nas	a val	lue of 1?	
Ignore "lo Idle indica	tes th	nat r	no i	npi	ut is	a 1			T . L . (0) M . (
Note that	<u>olari</u>	<u>ty o</u>	ot Id		<u>s or</u> outs	opos	site	trom	<u>1 Table 4-</u> 8 in Mano Outputs	
	I ₀ I	[1]	I ₂	I 3	I 4	I 5	I 6	I 7	$y_2 y_1 y_0$ Idle	
	0	0	0	0	0	0	0	0	x x x 1	
	1	0	0	0	0	0	0	0	0 0 0 0	
		-	0		0			0	0 0 1 0	
			1			0		0	0 1 0 0	
				1		0		0	0 1 1 0	
			X	Х	1	0	0	0	1 0 0 0	
			X X	X	X	1	0	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
			- X	X	X	X	1	0	$1 \ 1 \ 0 \ 0$	

Dataflow Modeling of a f-bit comparator potel magcomp (A,B,ALSB,AGTB,AEQB); input [3:0] A,B; dutput ALTB, AGTB,AEQB; assign ALTB = (A < B), AGTB = (A > B), dEQB = (A=B);

	Week3	70

```
Description of a 4-to-1 MUX using a case statement:
module mux4to1 (W, S, f);
input [0:3] W;
input [1:0] S;
output f;
reg f;
always @(*)
         case (S)
                 0: f = W[0];
                 1: f = W[1];
                 2: f = W[2];
                  3: f = W[3];
         endcase
endmodule
                              Week3
                                                                      71
```

```
Verilog description of a priority encoder:
module priority (W, Y, z);
input [3:0] W;
output [1:0] Y;
output z;
reg [1:0] Y;
reg z;
always @(*)
        begin
                 z = 1;
                 casex (W)
                          4'b1xxx: Y = 3;
                          4'b01xx: Y = 2;
                          4'b001x: Y = 1;
                          4'b0001: Y = 0;
                          default: begin
                                  z = 0;
                                   Y = 2'bxx;
                                   end
                 endcase
        end
endmodule
                            Week3
                                                                    72
```

```
Verify description of a 16-to-1 MUX constructed as a tree off(t):module mux16to1 (W, S, f, M);input [0:15] W;input [0:15] W;input [3:0] R;output [3:0] M;mux4to1 Mux1 (W[0:3], S[1:0], M[0]);mux4to1 Mux2 (W[4:7], S[1:0], M[0]);mux4to1 Mux3 (W[8:11], S[1:0], M[2]);mux4to1 Mux4 (W[12:15], S[1:0], M[2]);mux4to1 Mux5 (M[0:3], S[3:2], f);
```