Digital Logic Design ECE300

Lecture 2
Boolean Algebra and Logic Gates

Boolean Algebra (Axiomatic Definition).

- Boolean algebra is an algebraic structure defined by a set of elements B, together with to binary operators + and ., provided that the following postulates are satisfied (Huntington).
- Closure with respect to + and .
- Identity element of + = 0, to . is 1
- Commutative wrt + and .
- Distributive over + and $. \times . (y+z) = (x.Y) + (x.Z)$ and over $. \times . (Y.Z) = (X+Y) . (X+Z)$
- For every element in B x, there is x' such that x+x'=1 and x.x'=0
- There are at lease 2 different element in B

Two-Valued Boolean Algebra

- The element 1 and 0 operation are OR and AND
- All postulates are satisfied

Duality

 Duality Principle: In Every algebraic expression deducible from the postulates of Boolean Algebra remains valid if the operators if the operators and identity elements are interchanged. In 2-valued Boolean algebra, exchange AND and OR, and 1 and 0

Basic Theorems

Postualte 1	X+0=x	X . 1=1
Postulate 5	X+X'=1	X . X'=0
Theorem 1	X+X=X	X . X =1
Theorem 2	X + 1 = 1	X * 0 = 0
Theorem 3	(x')'=x	
Commutative	X + Y = Y + X	X . Y = Y . X
Associative	X + (Y + Z)=(X + Y) + Z	X(YZ)=(XY)Z
Distributive	X(Y+Z)=(X.Y)+(X.Z)	X + YZ = (X+Y)(X+Z)
DeMorgan	(x+y)'=x'y'	(xy)'=x'+y'
Absorption	x + xy = x	x(x+y)=x

Boolean Function

- Boolean functions can be represented in a truth table that shows the value of the function for all different combination of the input variables.
- An algebraic expression
- Circuit diagram that implements the algebraic expression
- Show as an example F=x+y'z and
 F=x'y'z+xz+yz'

Algebraic manipulation

- We define a *literal* to be a single variable within x'y+zxy is composed of 2 terms and 5 literals.
- By reducing the number of literals, or terms we can obtain a simpler circuit
- x(x'+y)=xx'+xy=0+xy=xy
- (x+y)(x+y')=x+xy+xy'+yy'=x(1+y+y')=x

Algebraic manipulation

- You can find the complement of a function by taking their duals, and complementing each literal.
- F=x'yz'+x'y'z
- Dual of F is (x'+y+z')(x'+y'+z')
- Complemnting literals (x+y'+z)(x+y+z)
- F'=(x'yz')' (x'y'z)'
- F'=(x+y'+z)(x+y+z')

Canonical and Standard Forms

- If you if we have n variables, we can have 2ⁿ different combination of these variables either in its normal or complemented form.
- Each of these terms is called a minterm
- In a similar matter, n variables added (Ored) can form 2ⁿ maxterm
- A boolean function can be expressed algebraically from a given truth table by forming a minterm for each combination of the variables that produces a 1 in the function and taking the OR of all these terms.

			minterms		maxterms	
X	У	Z	term		term	
0	0	0	x'y'z'	m0	x+y+z	MO
0	0	1	x'y'z	m1	x+y+z'	M1
0	1	0	x'yz';	m2	x+y'+z	M2
0	1	1	x'yx	m3	x+y'+z'	M3
1	0	0	xy'z'	m4	x'+y+z	M4
1	0	1	xy'z	m5	x'+y+z'	M5
1	1	0	xyz'	m6	x'+y'+z	M6
1	1	1	xyz	m7	x'+y'+z'	M7

 $m'_i=M_j$

- A Boolean function can be expressed algebraically from a given truth table by forming a minterm for each combination of the variables that produces a 1 in the function, then taking the OR of all these terms.
- It could be also expressed as the product of maxterms, where a maxtrm is formed for each combination of the variables that produces a 0 in the function.

- Example consider the following table
- F=x'y'z'+x'yz'+xy'z'
- $F=m_0+m_2+m_4$
- F'=x'y'z + x'yz + xy'z+xyz' + xyz
- F=(x+y+z')(x+y'+z')(x'+y+z') (x'+y'+z)(x'+y'+z)
- $F=M_1 . M_3 . M_5 . M_6 . M_7$

```
      x
      y
      z
      f

      0
      0
      0
      1

      0
      0
      1
      0

      0
      1
      0
      1

      0
      1
      1
      0

      1
      0
      1
      0

      1
      1
      0
      0

      1
      1
      1
      0

      1
      1
      1
      0
```

Example

$$F(A,B,C) = \sum (1,4,5,6,7)$$

$$F'(A,B,C) = \sum (0,2,3) = m_0 + m_2 + m_3$$

$$F = \overline{(m_0 + m_2 + m_3)} = m_0' m_2' m_3' = M_0 + M_2 + M_3$$

$$F = \prod (0,2,3)$$

- Express the function F=A+B'C in a sum of minterm
- Method 1 make truth table
- Method 2, note that
 - A=A(B+B')=AB+AB'
 - F=AB+AB'+B'C
 - F=AB(C+C')+AB'(C+C')+(A+A')B'C
 - F=ABC+ABC'+AB'C+AB'C'+AB'C+A'B'C
 - $F=m_7+m_6+m_5+m_4+m_5+m_1=\Sigma(1,4,5,6,7)$

Other Logic Functions

x	у	F0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Fall 08

Other Logic Functions

F0=0		Null	Constant 0
F1=xy	x.y	AND	
F2=xy'	x/y	Inhibition	X but not y
F3=x		transfer	
F4=x'y	y/x	Inhibition	Y but not x
F5=y		Transfer	
F6=xy'+x'y	X⊕y	Exclusive OR	X, or y but not both
F7=x+y	Х+у	OR	
F8=(x+y)'	X↓Y	NOR	Not OR

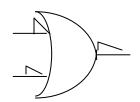
Fall 08

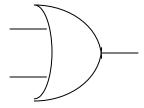
Other Functions

F9=xy+x'y'	(x ⊕ y)'	Equivalence	X equals y
F10=y'	Y'	Complement	NOT y
F11=x+y'	$X \subset Y$	Implication	If y, then x
F12=x'	X'	Complement	NOT x
F13=x'+y	X⊃Y	Implication	If x, then y
F14=(xy)'	X↑Y	NAND	NOT AND
F15=1		Identity	Constant 1

Digital Logic Gates

 Explain AND, OR, NOT, Buffer, NAND, NOR, EX-OR, EX-NOR





Negative Logic

Extension to Multiple Inputs

- The extension of AND, and OR is easy
- Consider NOR
- $(X \downarrow Y) \downarrow Z = ((x+y)'+z)' = xz' + yz'$
- For simplicity we define
- $X \downarrow Y \downarrow Z = (X+Y+Z)'$
- $X \uparrow Y \uparrow Z = (XYZ)$

Positive and Negative Logic

- Hardware digital gates are defined in terms of signal values H and L, it is up to the user to define what is H and L
- Consider the following table
- If we define H=1, L=0
 It is AND (+ve logic)
- If we define H=0, L=1
 It is OR (-ve Logic)

```
X Y F
L L L
L H L
H L H
```

Digital Logic Families

- TTL: standard
- ECL: high speed
- MOS: high component density
- CMOS: Low power, currently the dominant logic family