Digital Logic Design ECE300

Lecture 2
Boolean Algebra and Logic Gates

Boolean Algebra (Axiomatic Definition).

- Boolean algebra is an algebraic structure defined by a set of elements B, together with to binary operators + and ., provided that the following postulates are satisfied (Huntington).
- Closure with respect to + and .
- Identity element of $+=0$, to . is 1
- Commutative wrt + and .
- Distributive over + and $. X .(y+Z)=(X . Y)+(X . Z)$ and over. $\mathrm{X}+(\mathrm{Y} . \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z})$
- For every element in $B x$, there is x^{\prime} such that $x+x^{\prime}=1$ and $x . x^{\prime}=0$
- There are at lease 2 different element in B

Two-Valued Boolean Algebra

- The element 1 and 0 operation are OR and AND
- All postulates are satisfied

Duality

- Duality Principle: In Every algebraic expression deducible from the postulates of Boolean Algebra remains valid if the operators if the operators and identity elements are interchanged. In 2-valued Boolean algebra, exchange AND and OR, and 1 and 0

Basic Theorems

Postualte 1	$\mathrm{X}+0=\mathrm{x}$	$\mathrm{X} .1=1$
Postulate 5	$\mathrm{X}+\mathrm{X}^{\prime}=1$	$\mathrm{X} . \mathrm{X}^{\prime}=0$
Theorem 1	$\mathrm{X}+\mathrm{X}=\mathrm{X}$	$\mathrm{X} . \mathrm{X}=1$
Theorem 2	$\mathrm{X}+1=1$	$\mathrm{X} * 0=0$
Theorem 3	$\left(\mathrm{x}^{\prime}\right)^{\prime}=\mathrm{x}$	
Commutative	$\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$	$\mathrm{X} . \mathrm{Y}=\mathrm{Y} . \mathrm{X}$
Associative	$\mathrm{X}+(\mathrm{Y}+\mathrm{Z})=(\mathrm{X}+\mathrm{Y})+\mathrm{Z}$	$\mathrm{X}(\mathrm{YZ})=(\mathrm{XY}) \mathrm{Z}$
Distributive	$\mathrm{X}(\mathrm{Y}+\mathrm{Z})=(\mathrm{X} . \mathrm{Y})+(\mathrm{X} . \mathrm{Z})$	$\mathrm{X}+\mathrm{YZ}=(\mathrm{X}+\mathrm{Y})(\mathrm{X}+\mathrm{Z})$
DeMorgan	$(\mathrm{x}+\mathrm{y})^{\prime}=\mathrm{x}^{\prime} \mathrm{y}^{\prime}$	$(\mathrm{xy})^{\prime}=\mathrm{x}^{\prime}+\mathrm{y}^{\prime}$
Absorption	$\mathrm{x}+\mathrm{xy}=\mathrm{x}$	$\mathrm{x}(\mathrm{x}+\mathrm{y})^{\prime}=\mathrm{x}$

Boolean Function

- Boolean functions can be represented in a truth table that shows the value of the function for all different combination of the input variables.
- An algebraic expression
- Circuit diagram that implements the algebraic expression
- Show as an example $F=x+y^{\prime} z$ and $F=x^{\prime} y^{\prime} z+x z+y z^{\prime}$

Algebraic manipulation

- We define a literal to be a single variable within x ' $y+z x y$ is composed of 2 terms and 5 literals.
- By reducing the number of literals, or terms we can obtain a simpler circuit
- $x\left(x^{\prime}+y\right)=x x^{\prime}+x y=0+x y=x y$
- $(x+y)\left(x+y^{\prime}\right)=x+x y+x y^{\prime}+y y^{\prime}=x\left(1+y+y^{\prime}\right)=x$

Algebraic manipulation

- You can find the complement of a function by taking their duals, and complementing each literal.
- $F=x^{\prime} y z z^{\prime}+x^{\prime} y^{\prime} z$
- Dual of F is $\left(x^{\prime}+y+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z^{\prime}\right)$
- Complemnting literals $\left(x+y^{\prime}+z\right)(x+y+z)$
- $F^{\prime}=\left(x^{\prime} y z^{\prime}\right)^{\prime}\left(x^{\prime} y^{\prime} z\right)^{\prime}$
- $F^{\prime}=\left(x+y^{\prime}+z\right)\left(x+y+z^{\prime}\right)$

Canonical and Standard Forms

- If you if we have n variables, we can have 2^{n} different combination of these variables either in its normal or complemented form.
- Each of these terms is called a minterm
- In a similar matter, n variables added (Ored) can form 2^{2} maxterm
- A boolean function can be expressed algebraically from a given truth table by forming a minterm for each combination of the variables that produces a 1 in the function and taking the OR of all these terms.

Canonical Form

		minterms		maxterms		
X	y	z	term		term	
0	0	0	$x^{\prime} y^{\prime} z^{\prime}$	$m 0$	$x+y+z$	$M 0$
0	0	1	$x^{\prime} y^{\prime} z$	$m 1$	$x+y+z^{\prime}$	$M 1$
0	1	0	$x^{\prime} y z^{\prime} ;$	$m 2$	$x+y^{\prime}+z$	$M 2$
0	1	1	$x^{\prime} y x$	$m 3$	$x+y^{\prime}+z^{\prime}$	$M 3$
1	0	0	$x y^{\prime} z^{\prime}$	$m 4$	$x^{\prime}+y+z$	$M 4$
1	0	1	$x y^{\prime} z$	$m 5$	$x^{\prime}+y+z^{\prime}$	$M 5$
1	1	0	$x y z^{\prime}$	$m 6$	$x^{\prime}+y^{\prime}+z$	$M 6$
1	1	1	$x y z$	$m 7$	$x^{\prime}+y^{\prime}+z^{\prime}$	$M 7$

Fall $08 \quad m_{i}^{\prime}=M_{j}$
CSE3201
10

Canonical Form

- A Boolean function can be expressed algebraically from a given truth table by forming a minterm for each combination of the variables that produces a 1 in the function, then taking the OR of all these terms.
- It could be also expressed as the product of maxterms, where a maxtrm is formed for each combination of the variables that produces a 0 in the function.

canonical Eorn

- Example consider the following table
- F=x'y'z'+x'yz'+xy'z'
- $F=m_{0}+m_{2}+m_{4}$
- $F^{\prime}=x^{\prime} y^{\prime} z+x^{\prime} y z+x y^{\prime} z$
+xyz' + xyz
- $F=\left(x+y+z^{\prime}\right)\left(x+y^{\prime}+z^{\prime}\right)$
$\left(x^{\prime}+y+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z\right)$ ($x^{\prime}+y^{\prime}+z$)

x	y	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Canonical Form

- Example

$$
\begin{aligned}
& F(A, B, C)=\sum(1,4,5,6,7) \\
& F^{\prime}(A, B, C)=\sum(0,2,3)=m_{0}+m_{2}+m_{3} \\
& F=\overline{\left(m_{0}+m_{2}+m_{3}\right)}=m_{0}^{\prime} m_{2}^{\prime} m_{3}^{\prime}=M_{0}+M_{2}+M_{3} \\
& F=\prod(0,2,3)
\end{aligned}
$$

Canonical Form

- Express the function $\mathrm{F}=\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}$ in a sum of minterm
- Method 1 make truth table
- Method 2, note that
- $A=A\left(B+B^{\prime}\right)=A B+A B^{\prime}$
- $F=A B+A B^{\prime}+B^{\prime} C$
- $F=A B\left(C+C^{\prime}\right)+A B^{\prime}\left(C+C^{\prime}\right)+\left(A+A^{\prime}\right) B^{\prime} C$
- $F=A B C+A B C^{\prime}+A B^{\prime} C+A B^{\prime} C^{\prime}+A B^{\prime} C+A^{\prime} B^{\prime} C$
- $F=m_{7}+m_{6}+m_{5}+m_{4}+m_{5}+m_{1}=\Sigma(1,4,5,6,7)$

Other Logic Functions

\mathbf{x}	\mathbf{y}	F0	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
$\mathbf{0}$	$\mathbf{0}$	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
$\mathbf{0}$	$\mathbf{1}$	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
$\mathbf{1}$	$\mathbf{0}$	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
$\mathbf{1}$	$\mathbf{1}$	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Other Logic Functions

F0=0		Null	Constant 0
F1=xy	x.y	AND	
F2=xy'	x/y	Inhibition	X but not y
F3=x		transfer	
F4=x'y	y / x	Inhibition	Y but not x
F5=y		Transfer	
F6=xy'+x'y	$X \oplus y$	Exclusive OR	X, or y but not both
F7=x+y	$X+y$	OR	
F8=(x+y)'	$X \downarrow Y$	NOR	Not OR
Fall 08		CSE3201	

Other Functions

F9=xy+ $x^{\prime} y^{\prime}$	$(x \oplus y)^{\prime}$	Equivalence	X equals y
F10=y'	Y^{\prime}	Complement	NOT y
F11=x+y'	$\mathrm{X} \subset \mathrm{Y}$	Implication	If y, then x
F12=x'	X^{\prime}	Complement	NOT x
F13=x'+y	$X \supset Y$	Implication	If x, then y
F14=(xy)'	$X \uparrow Y$	NAND	NOT AND
F15=1		Identity	Constant 1
Fall 08	CSE3201		

Digital Logic Gates

- Explain AND, OR, NOT, Buffer, NAND, NOR, EX-OR, EX-NOR

Negative Logic

Extension to Multiple Inputs

- The extension of AND, and OR is easy
- Consider NOR
- $(X \downarrow Y) \downarrow Z=\left((x+y)^{\prime}+z\right)^{\prime}=x z^{\prime}+y z^{\prime}$
- For simplicity we define
- $X \downarrow Y \downarrow Z=(X+Y+Z)^{\prime}$
- $X \uparrow Y \uparrow Z=(X Y Z){ }^{\prime}$

Positive and Negative Logic

- Hardware digital gates are defined in terms of signal values H and L, it is up to the user to define what is H and L
- Consider the following table
- If we define $H=1, L=0$

It is AND (+ve logic)

- If we define $H=0, L=1$ It is OR (-ve Logic)

Digital Logic Families

- TTL: standard
- ECL: high speed
- MOS: high component density
- CMOS: Low power, currently the dominant logic family

