
1

CSE2301

Arrays and Pointers

Warning: These notes are not complete, it
is a Skelton that will be modified/add-to in
the class. If you want to us them for
studying, either attend the class or get the
completed notes from someone who did

These slides are based on slides by Prof. Wolfgang
Stuerzlinger at York University

Arrays

• Data structure
• Grouping of data of the same type
• Indicated with brackets containing positive

integer constant or expression following
identifier
– Subscript or index

• Loops commonly used for manipulation
• Programmer sets size of array explicitly

2

Arrays

• Syntax
– type name[value];

• Example
– Int bigArray[10];
– Double a[3];
– Char grade[10], oneGrade;

Arrays

• Declare the array allocates memory
int score[5];
– Declares array of 5 integers named "score"
– Similar to declaring five variables:

int score[0], score[1], score[2], score[3], score[4]

• Individual parts called many things:
– Indexed or subscripted variables
– "Elements" of the array
– Value in brackets called index or subscript

• Numbered from 0 to size - 1

3

Arrays

a[0]

a[1]

a[2]

a[n]

1234
1235
1236
1237
1238
…..
…
…

1260
1261 Some other

variables

Initialization

• In declarations enclosed in curly braces

int a[5] = {11,22}; Declares array a and initializes first two
elements and all remaining set to zero

int b[] = {1,2,8,9,5}; Declares array b and initializes
all elements and sets the length
of the array to 5

4

Array Access

• X=ar[2];
• ar[3]=2.7;
• What is the differenc ebetween ar[i]++,

ar[i++], ar[++i];

Strings

• No string type in C
• Char gretings[]=“hello”

H e l l o \n

5

Pointers

• Memory address of a variable

• Declared with data type, * and identifier
type * pointer_var1, * pointer_var2, …

• Example.
double * p
int *p1, *p2;

• There has to be a * before EACH of the pointer
variables

• Use the "address of" operator (&)
• General form:

pointer_variable = &ordinary_variable

Name of the pointer Name of ordinary
variable

6

Using a Pointer Variable

• Can be used to access a value
• Unary operator * used

* pointer_variable
– In executable statement, indicates value

• Example
int *p1, v1;
v1 = 0;
p1 = &v1;
*p1 = 42;
printf(“%d\n“,v1);
printf(“%d\n,*p1);

Output:
42
42

Pointer Variables

x = 25;
y = x;
z = &x;

25

1200 1204 1208

9608 8404

25 1204

int x,y;

int * z;

7

Pointer variables

z= 0x12345A BAD idea

Instead, use z=& another-vriable

Pointer Types

25

1200 1204 1208

1204

8404

9608

25

z=*y

z

y

8

Pointers

Pointers

• identifier of an array is equivalent to the address of its
first element

– int numbers [20];
int * p;

p = numbers // Valid
numbers = p // Invalid

• p and numbers are equivalent and they have the same
properties

• Only difference is that we could assign another value to
the pointer p whereas numbers will always point to the
first of the 20 integer numbers of type int

9

Pointer Arithmetic

• int *x, *y
• int z;
• Can do

– z=x-y;
– x=NULL;
– if(c==NULL)
– Also, what is void * ?

Pointer Arithmetic

• int x[10];
• what is x[i] is it the same as *(x+i)
• What is the unit of x++ or x+5 5 what?
• Two functions
• void swap(int x, int y)
• void swap(int *x, int *y)

10

Pointers

• void * (pointer to a void) is the generic pointer
replacing char *)

• Legal: add/sub a pointer and an integer,
subtracting and comparing 2 pointers to
members of the same array, and assigning or
comparing to zero.

• Illegal add, multiply or divide 2 pointers, or
assign one type to another type except void *
without a cast.

• Any pointer can be cast to void * and back again
without loss of information (used for pointer
argument).

Functions

• Arrays passed to a functions are passed by
reference.

• The name of the array is a pointer to its first
element

• strcpy(char dest[], char src[]);

• Note that does not copy the array in the
function call, just a reference to it.

11

String Functions

• Man the following functions
– strcpy
– strcmp
– strcat
– trlen
– strchr
– strstr

Multi-Dimensional Arrays

Int a[3][3];

Int a[3][3] = {

{1,2,3},

{4,5,6},

{7,8,9}};

Int a[][3] = {

{1,2,3},

{4,5,6},

{7,8,9}};

Int a[][] = {

{1,2,3},

{4,5,6},

{7,8,9}};

12

Multi-Dimensional Arrays

• Multi-dimensional arrays are array of arrys
• For the previous example, m[0] is a pointer

to the first row.
• Lay out in memory

M[0][0] M[0][1] M[0][2] M[1][0]

Multidimensional arrays
• #include <stdio.h>
• int main() {
• float *pf;
• float m[][3]={ {0.1, 0.2, 0.3},
• {0.4, 0.5, 0.6},
• {0.7, 0.8, 0.9}};
• printf("%d \n",sizeof(m));
• pf=m[1];
• printf("%f %f %f \n",*pf, *(pf+1), *(pf+2));
• printf("%f %f %f \n",*pf, *(pf++), *(pf++));
• }

36

0.4000 0.5000 0.6000

0.6000 0.5000 0.4000

-1073744492 bfff594

13

Array of Pointers

• Char *words[]={“apple”, “cherry”, “banana”};
• Words is an array of pointers to a char, each

element of words words[0], … is a pointer to a
char.

words

0

1

2

“apple”

“cherry”

“banana”

Pointers to Pointers

• Pointers can point to integers, floats,
chars, and other pointers.
int **j;

int *i;

int k=10;

i=&k;

j=&I;

printf(“%d %d %d\n”,j,i,k);

printf(“%d %d %d\n”,j,*j,**j);

printf(“%x %x %x\n”,j,*j,**j);

-1073744352 -1073744356 10

-1073744352 -1073744356 10

bffff620 bffff61c a

On my system

14

Arrays vs. Pointers

• What is the difference between the last
example and

• char words[][10] = { “apple”,
• “cherry”,

• “banana”};

strcpy

void strcpy(char *s, char *t) {

int i;

i=0;

while((s[i] = t[i]) != ‘\0’)

i++;

}

15

strcpy

void strcpy(char *s, char *t) {

while((*s = *t) != ‘\0’) {

s++;

t++

}

}

strcpy

void strcpy(char *s, char *t) {

while((*s++ = *t++) != ‘\0’) ;

}

16

char *words[] = { “apple”,
“cherry”,
“banana”};

Char **p;
p=words;
printf("%c\n", **p);
printf("%c\n",*(*(p+1)+2));

EX

a
e
o

a
e

Pointers to Whole Arrays

Char (*p2)[100];

char name[100];

char *p1;

p1=name;

p2=name; // What is the difference?

Consider p1+1 and p2+1

17

Command-Line Arguments

• Up to now, we defines main as main()
• Usually it is defined as
• main(int argc, char*argv[])

• argc is the number of arguments
• argv is a pointer to the array containing

the arguments.
• argv[0] is a pointer to a string with the

program name

Command-Line Arguments

main(int argc, char *argv[]) {

int I;

printf(“Number of arg=%d\n“,argc);

for(i=0;i<argc,i++)

printf(“%s\n”,argv[i]);

}
a.out
Number of arg=1
a.out

a.out hi by 3
Number of arg=4
a.out
hi
by
3

What if ./a.out

18

Pointers to Functions

• Although functions are not variables, it is
possible to assign a pointer to a function.

• That pointer could be manipulated,
assigned, placed on arrays, or
passed/returned to/by functions.

comp is a pointer to a function
that has 2 void * arguments

and returns an int

int (*comp)(void *, void *)

int *comp(void *, void *)

comp is a function that has 2
void * arguments and returns

a *int

19

Example

main() {
float y,z;
float (*myfun)(float);
x=0.76;
y=acosf(x);
printf("%f\n",y);
printf("===========\n");
myfun=acosf;
z=myfun(x);
printf("%f\n",z);
}

0.707483

==========

0.707843

Complicated declaration

• int *f();
– f returns a pointer to int

• int (*pf)()
– pf is a pointer to a function that returns int

• char **argv
– argv is a pointer to pointer to char

• int (*daytab)[13]
– daytab pointer to an array [13] of int

20

Complicated Declaration

• char (*(*x())[]) ()
– x is a function returning pointer to array of

pointers to function returning char
• char (*(*x[3]) ()) [5]

– x is an array[3] of pointer to function returning
pointer to array[5] of char

