
1

CSE2031

Introduction

Warning: These notes are not complete, it
is a Skelton that will be modified/add-to in
the class. If you want to us them for
studying, either attend the class or get the
completed notes from someone who did

Introduction

• Instructor: Mokhtar Aboelaze
• Room 2026 CSEB

aboelaze@cse.yorku.ca x40607
• Office hours TR 11:00-12:00 or by

appointment

2

Grading Details

• HW 15%
• Lab 15%
• Midterm 25%
• Final 45%

Introduction

• Course Content
• C

– Learn how to write test, and debug C
programs.

• UNIX (LINUX)
– Using Unix tools to automate making and

testing.
– Unix shell programming

3

Text

• The C Programming Language, Kernighan
and Ritchie (K+R)

• Practical Programming in the UNIX
Environment, edited by W. Sturzlinger

• Class notes (Slides are not complete,
some will be filled in during class).

• Man pages

Course Objective

• By the end of the course, you should be
able to
– Write applications (though small) in C
– Test and debug your code
– Use UNIX to automate the compilation

process
– Write programs using UNIX shell scripts and

awk

4

WHY C and UNIX

• Wide use, powerful, and fast
• Both started at AT&T Bell Labs
• UNIX was written in assembly, later

changed to C
• Many variants of UNIX

Software Development Cycle

Idea/specs Design Coding Program

TestingDebugging

5

Why Testing

• Specifications = LAW, you have to obey it.
• No changes improvement unless it is approved
• If in doubt, ask
• First create test cases, test, if error debug repeat
• Testing can show the presence of faults, not

their absence -- Dijkstra
• Testing is very costly, in large commercial

software 1-3 bugs per 100 line of code.

Why Testing

• 1990 AT&T long distance calls fail for 9 hours
– Wrong location for C break statement

• 1996 Ariane rocket explodes on launch
– Overflow converting 64-bit float to 16-bit integer

• 1999 Mars Climate Orbiter crashes on Mars
– Missing conversion of English units to metric units

• Therac: A radiation therapy machine that delivered
massive amount of radiations killing at lease 5
people
– Among many others, the reuse of software written for a machine

with hardware interlock. Therac did not have hardware interlock.

6

Why Testing

– Jan 13, 2005, LA Times
“A new FBI computer program designed to
help agents share information to ward off
terrorist attacks may have to be scrapped,
forcing a further delay in a four-year, half-
billion-dollar overhaul of its antiquated
computer system… Sources said about $100
million would be essentially lost if the FBI
were to scrap the software…”

Type of Errors

• Errors in program called bugs
• Testing is the process of looking for errors,

debugging is found
• Three types of errors

– Syntax
– Run-time
– Logic

7

Syntax Errors

• Mistakes by violating “grammar” rules
• Diagnosed by C++ compiler
• Must fix before compiler will translate code

Syntax Errors

• #<include stdio.h>
• int main ();
• (
• printf(‘Hello World’);
• /* Next line will output
• a name! /*
• printf(“ Total is %d

\n”,total);
• printf(“Final result is

\n,result);
• }

#include <stdio.h>
int main()
{
printf(“Hello World”);

/*next line will output
A name */
Printf(“Total is %d
\n”,total);
printf(“Final result is
\n”,result););
}

8

Runtime Errors

• Violation of rules during execution of
program

• Computer displays message during
execution and execution is terminated

• Error message may help locating error

• E.g. X= 5 / 0;

Logical Errors

• Will not be detected by the compiler, may
or may not produce an error message (if it
results in a runtime error)

• Difficult to find
• Execution is complete but output is

incorrect
• Programmer checks for reasonable and

correct output

9

C Syntax

• Java-like (Actually Java has a C-like
syntax), some differences

• No //, only /* */ multi line and no nesting
• No garbage collection
• No classes
• No exceptions (try … catch)
• No type strings

First C Program

/* Our first program */
#include <stdio.h>
void main() {

printf(“Hello World \n”);
}

10

Special Characters

Single quote\’

The null character\0

The \ character\\

Double quote\”

Tab\t

New line\n

Data Types

• 4 basic types in C
– char – Characters
– int -- Integers
– float – Single precision floating point numbers
– double – Double precision floating point

numbers

11

Modifiers

• signed (unsigned) int long int
• long long int
• int may be omitted
• sizeof()

Characters

• One byte
• Included between 2 single quotes
• char x =‘A’
• Character string “This is a string”
• ‘A’ != “A”

• X=‘\012’ newline or 10 decimal

A A \0

12

Characters

Boolean Expressions

• Relational operators
• ==, !=, <, <=, >, >=
• Logical operators
• &&, ||, !

13

I/O

• Every program has a standard input and
output (stdin, stdout and stderr)

• Usually, keyboard and monitor
• Can use > and < for redirection
• printf(“This is a test %d \n”,x)
• scanf(“%x%d”,&x,&y)
%d %s %c %f %lf
integer string character float double precision

I/O

• int getchar
– Returns the next character on standard input

or EOF if there are no characters left.
• int putchar(int c);

– Writes the character c on the standard output
• int printf(char *format,…)
• printf(“The result is %f \n”,x);

14

C Basics

• Variable name is a combination of letters,
numbers, and _ that does not start with a
number and is not a keyword

• Abc abc5 aA3_ but not 5sda
• #include <filename.h> replaces the

include by the actual file before
compilation starts

• #define abc xyz replaces every occurrence
of abc by xyz

C Basics

• Expressions
• abc= x+y*z
• J=a%i
• ++x vs. x++
• X += 5;

// x = x + 5;
• Y /= z;

// Y = Y / z
What is x *= y+1 ?

15

C Basics

• Decimal numbers 123487
• Octal: starts with 0 0654
• Hexadecimal starts with 0x or 0X ox4Ab2
• 7L for long int =7
• 8U for unsigned
• For floats 24, 23.45, 123.45e-8, 3.4F,

2.15L

Mixed type arithmetic

int

int
int

double

double
double

int

double
double

int x=5, y=2, w;
double z, q = 2;

z = x/y;
// z = 2.0

w = x/y;
// w = 2

z = x/q;
// z = 2.5

w = x/q;
// w = 2

16

Mixed type arithmetic

• 17 / 5
– 3

• 17.0 / 5
– 3.4

• 9 / 2 / 3.0 / 4
– 9 / 2 = 4
– 4 / 3.0 = 1.333
– 1.333 / 4 = 0.333

Mixed type arithmetic

• How do you cast variables?
e.g.

int varA = 9, varB = 2;
double varC;

varC = varA / varB; // varC is 4.0

varC = varA / (double) varB // varC is 4.5

Doesn’t change the value of varB,
just changes the type to double

17

Pre- and Post- Operators

• ++ or --
• Place in front, incrementing or decrementing occurs BEFORE value

assigned

• Place in back, occurs AFTER value assigned

k = i++;

k = ++i;

i = 2 and k = 1

k =--i;

k = i--;

i = i + 1;
k = i;

3
3

i = i - 1;
k = i;

1
1

k = i;
i = i + 1;

2
3

k = i;
i = i - 1;

2
1

i = 2 and k = 1

Precedence

• () Parentheses L to R 1
• ++, - - Postincrement L to R 2
• ++, - - Preincrement R to L 3
• +, - Positive, negative L to R 3
• *, /, % Multiplication, division L to R 4
• +, - Addition, subtraction L to R 5
• <=, >=, >, < Relational operator L to R 6
• ==, != Relational operator L to R 7
• && Logical AND L to R 8
• || Logical OR L to R 9
• +=, -+, *=, /=, %= Compound assignment R to L 10
• = Assignment R to L 10

18

Examples

• int a=2, b=3; c=5, d=7, e=11, f=3;
• f +=a/b/c;
• d -=7+c*--d/e;
• d= 2*a%b+c+1;
• a +=b +=c +=1+2;

Bitwise Operators

• Works on the individual bits
• &, |, ^, ~
• short int i=5, j=8;
• k=i&j;
• k=i|j;
• k=~j;

19

Bit Shifting

• x<<y means shift x to the left y times
• x>>y means shift x to the right y bits
• Shifting 3 many times 0 3

1 6

2 12

3 24

4 48

13 49512

14 32768

Bit Shifting

• What about left shifting
• If unsigned, 0 if signed undefined in C
• It could be logical (0) or arithmetic (sign)
• Unsigned int I =714
• 357 178 89 44 22 11 5 2 1 0
• What if -714
• -357 -178 -89 . . . -3 -2 -1 -1 -1 -1

20

Examples

Boolean expressions

• False is 0, any thing else is 1

21

Limits

• The file limits.h provides some constants
• char- CHAR_BIT, CHAR_MIN,
CHAR_MAX, SCHAR_MIN, …

• int INT_MIN, INT_MAX, UINT_MAX
• long LONG_MIN, …
• You can find FLOAT_MIN, DOUBLE_MIN,

… in <float.h>

Conditional experssions

• Test? exper-true:expe-false
• z=(a>b)? a:b

22

Control Flow

• if, while, do while
• The execution of the program depends on

some conditions
• Similar to Java

Control Flow

• if (expression)
• statement

• else
• statement
• else is optional
• What is statement?

; // null statement

x=a+b;

{

…….

}

{
…

{
…….

}
}

23

Control Flow

• if (expression)
• statement1;

• else if (expression)
• statement2;

• else if (expression)
• statement3;

• else
• statement4;

• if (expression)
• statement1;

• if (expression)
• statement2;

• else
• statement4;

While

• while (expression)
• statement

• do
• statement

• while(expression)

24

For

• for(i=0, j=3; i<10 && k>2; i++,j--)
• statement

• for(;;)

Break and Continue

• Break – exits the innermost loop
• Continue – skips the current iteration and

starts the next one

25

Switch

• switch(x) {
• case 0 : …………
• break;
• case 1 : ……….
• break;
• }

Unique cases, no duplication

Switch (expression) not allowed

Files

• You must open the file before you read or
write to it (what about stdin, …).

• The system checks the file, and returns a
small non-negative integer known as file
descriptor, all reads and writes are
through this file descriptor.

• 0,1,2 are reserved for stdin, stdout, and
stderr.

26

Files

• FILE *fp1;
• FILE *fopen(char *name, char *mode)

• fp1=fopen(name, mode);
• Name is a character string containing the

name of the file, mode is a character string
to indicate how the file will be used

• Mode could be “r”, “w”, “a”, “r+b”,

Files

• To read or write characters from a file
• int fgetc(FILE * fp);

• Returns a byte from a file, or EOF if it
encountered the end of file

• int fputc(int c, FILE *fp);

• Writes the character c to the file (where to
write it?)

