
1

CSE2301

Unix/Linux
Introduction

Warning: These notes are not complete, it
is a Skelton that will be modified/add-to in
the class. If you want to us them for
studying, either attend the class or get the
completed notes from someone who did

These slides are based on slides by Prof. Wolfgang Stuerzlinger
at York University

Introduction

• The basic concepts of AWK and how to
use it.

• AWK is a AWK text-processing and
pattern-scanning language.

• AWK works on text input -- and this text
can be a file or the standard input stream
which it sorts into records and fields

• awk scans the input file and splits each
input line into fields automatically.

2

How AWK views the input

Start
of
file

Record Record EOFRS RS . . .

FILE

RECORD

Field 1 Field 2FS FS . . . NF

Field 0

AWK

• AWK programs consist of rules, which are
patterns followed by actions separated by
newlines.

• When AWK follows a rule, it searches the input
records for matches to the given pattern, and
then performs the given action on those records:

• /pattern/ {action} if the pattern matches, the
action is performed

• You can omit either the pattern or the action

3

AWK

• //
• {print}
• // {print}
• What do they do?
• awk // file
• awk ‘//’ file
• awk –f scriptfile file
• awk ‘/word/ {print}’ file

Examples

• {print “total pay for”. $1, “is”, $2*$3}
• What is the difference
• {print $1 $2 43} and
• {print $1, $2, $3}

• {print $1 “:” “\t” $2*$3}
• {print “Total pay for %-20s is %.2f\n”, $1,

$2*$3)}

4

Examples

BEGIN and END

• AWK contains two special patterns: BEGIN and
END. Both are given without slashes.

• The BEGIN pattern specifies actions to be
performed before any records are

• processed:
• BEGIN {action}
• The END pattern specifies actions to be

performed after all records are processed:
• END {action}

5

BEGIN and END

• BEGIN is frequently used to set variables;
END is often used to tabulate, total, and
process data and figures that were read in
the various input records.

• Together, these patterns are often used to
output text before and after the processed
input text is output.

Example

Program to print a file with a header and footer.
BEGIN { print "Beginning of file";

print "-----------------" ;
}

// # Print every line in the file.
END { print "------------"; print "End of file."}

6

Examples

• awk ‘BEGIN{print “name rate Hours”;
print””} {print}’ emp.dat

Selection

• We can select lines that conatins a
specific pattern

• $1 == “Susie”
• or we can use
• /Susie/
• $2 <= $4 || $3 < 20
• Can be used for data validation

7

Counting

• $3 > 15 {emp = emp +1}
• END{ print emp “employees worked mor

ethan 15 hours”}

wc in awk

• {nc = nc + length($0)+1 # for \n
• nw = nw+NF
• }
• END {print NR “Lines, “, nw “words, and

“,nc “characters”}

8

if statement

• $2 >= 6 {n=n+1; pay=pay+$2*$3}
• END{ if(n>0)
• print n, “employees, toal is “.pay,

‘average pay is “,pay/n
• else
• print “No such employees”

while

• {i=1
• while (i<=$3) {
• printf(“\t%.2f\n”,$1*(1+$2^i)
• i=i+1
• }
• }

$awk –f awk8

100 0.06 5

106.00

112.36

119.10

126.25

133.82

1760 0.1 10

1936.oo

2129.60

2342.56

and so on

9

for

• {for (i=1; i<=43; i=i+1)
• printf(“\t%.2f\n”,$1*(1+42)^i)
• }

Arrays

• #reverse print the input
• {line[NR]=$0}
• END{i=NR
• while(i>0) {
• print line[i]
• i=i-1
• }
• }

10

Arrays

• BEGIN {
• n=0
• while((getline <“file.txt”) >0) {
• x1array[$1]=$1
• x2aray[$1]=$2
• n++
• }
• }
• {if(x1array[$1]) { }
• END { for(x in x1array) do something }

what order ?

Functions
• exit Stops the execution of the program

and exits.
• next Stops processing the current record

and immediately advances to the next record.
• nextfile Stops processing the current file and

immediately advances to the next file.
• print Prints quoted text, records, fields, and

variables.
• (The default is to print the entire current record.)
• printf Prints formatted text, similar to its C

counterpart, but the trailing newline must be
specified.

• sprintf Returns as a string as formatted text
using the same format as printf.

11

Example

• Input file
Not it’s time for
All good men to
Come to the help of
Their party

Awk ‘{print $2}’ file
it’s

good

to

party

Awk ‘{print “Field 2: “ $2}’ file
Field 2: it’s

Field 2: good

Field 2: to

Field 2: party

Changing FS

• By default Field Separator is white spaces.
• Record separator is a new line
• BEGIN {FS = “:”} Changes the filed

separator to “:”
• Similarly for RS
• OFS (Output filed separator used to

separate fields in print is a single space),
could also be changed (ORS)

12

NF and NR

• The variable NF holds the number of fields
in the current record, first field is 1.

• $NF refers to the contents of the last field.
• NR holds the number of the current

record, the first record is 1

Example

$ echo ’1
> 2
> 3
> 4’ | awk ’NR == 2 { NR = 17 }
> { print NR }’
1
17
18
19

13

• Input file
Not it’s time for
All good men to
Come to the help of
Their party

awk ‘{print “Record “ NR has NF fields and
ends with $NF}’ file

Record 1 has 4 fields and ends with for

Record 2 has 4 fields and ends with to

Record 3 has 5 fields and ends with of

Record 6 has 2 fields and ends with party

Other Variables

• FILENAME This variable contains the
name of the current file being read

• IGNORECASE when this variable set to
non null value awk ignores case in
matching

14

Pattern matching

• awk ‘/green/ {print}’ file
• Or you can use regular expressions
• awk ‘/!.*/’ file
• You can match a pattern in a field use filed

number ~ (contains) string
• awk ‘$7 !~ /bash/ {print}’ file

Boolean Operators

• We can use &&, ||, and ! As we do in C
• Print the fourth field of all records in a file

that contains in , the and to any where in
the line

• awk ‘/in/ && /the/ && /to/ {print $4} file

15

Changing fields

• We can do something like that
• awk ‘{$3=$2 -10; print $2 $3}’ file
• it modifies the third field and prints the

second and third field.

Summary

• expression {statement}
• /regular expression/ {statement}
• Compound pattern {statement}
combines expressions with &&, ||, ! and

parenthesis
• pattern1, pattern2 {statement}
A range pattern matches each input line from a

line matched by pattern1 to the next line
matched by pattern2 – can not be a part of any
other pattern

16

built in Arithmetic Functions

• sin, cos int log rand sqrt srand(x)

built in string functions

• index(s,t_ returns the leftmost position
where the string t begins in s, or zero if it
does not exist

• index(“banana”, “an”) returns 2
• match(s,r) finds the leftmost longest

substring in s that is matched by the
regular expression r

17

built in string functions

• split(s,a,fs) splits the string s into the array a
according to the separator fs and returns the
number of elelemnts

• gsub(r,s) substitute s for r globally in $0
• gsub(r,s,t) substitute s for r globally in string t
• Both return the number of substitutions made.
• gsub(/ana/, “anda”, “banana”)
• replaces banana by bandana matches are non

overlapping

Built in String Functions

• gsub(/a/, “aba”, “banana”)
• Replaces banana by babanabanaba
• So does gsub(/a/, “&b&”, “banana”)
• sub(r,s,t) substitute s for the leftmost

longest substring of t matched by r; returns
number of substitution made.

18

User-Defined Functions

• Definitions of functions may appear
anywhere between the rules

function name (parameters list) {
body

}

User-Defined Functions

• Example
function myprint(num) {

printf (“%d.3g\n”,num)
}
$3>0 {myprint($3)}

19

User-Defined functions

function rev(str, len) {
if(len == 0) {

printf(“\n”)
return

}
printf (“%c”, substr(str, len, 1)
rev(str,len-1)
}
$1>0 {rev($2, length($2))}

