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Testing

• We talked about testing earlier in the 
course

• Reminder:
– Testing is about determining what is broken
– Testing is never complete

• Approaches to testing
– Black box vs. glass box
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Warning: These notes are not complete, it 
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testing and Debugging

• How programmer ensures that a program 
“works”
– First creates set of test cases according to spec
– Then creates implementation
– Then tests implementation
– Debugging if not all tests pass
– Repeat until compliance with specification

• Note all of the above is the job of the 
programmer
– Not customer, nor spec author, nor compliance tester
– Includes creation of adequate test cases

Testing

• We need to pick our tests and perform 
them

• A good test should be:
– Specific
– Repeatable
– Deterministic
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Using Shell Scripts

• Shell scripts can help with the “repeatable” and
• “deterministic” parts
• We want to encapsulate the test in a script
• Running the script will perform the test for us 

and
• tell us the result
• Running the test again later should be as easy 

as running the script

Testing

• So let’s put together a script for the test we’ve 
come up with

• Assume that the program we are testing is called
“convert”
• The command
convert
• executes the program with stdin being the 

keyboard and stdout being the screen
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Using Redirection

• We could perform the test ourselves by 
typing in the test but we want to make it 
easier

• Put the input in a file (called test1.input)
• Use redirection to use that file as input:
• convert <test1.input

Using Redirection

• This will run the program and give it the 
input and then print the output on stdout

• We could check the output by hand
– This is easy in this particular case

• However in general, it is much better to let 
the computer checks it.
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Using redirection

• We create another file containing the 
expected output (call it test1.output)
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test1.input test1.output

Comparing Output

• First of all we need to capture the output
• convert <test1.input >tmpfile
• This will put the output of the program in a 

file called “tmpfile”
• We can now compare the two files 

“tmpfile” and
• “test1.output” to see if the program passed 

or failed the test
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Comparing Output

• diff tmpfile test1.output
• If they are the same, diff outputs nothing and 

exits with a status of 0
• If they do not match, you see something like:
• 5c5
• < 000
• ---
• > 0
• and exit status is non-zero

Putting it Together

• Here’s our first testing script:
#!/bin/sh
f=tmpfile
convert <test1.input >$f
diff $f test1.output
• If the program passes the test we see nothing
• If the program fails the test we see an error
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Avoid Silent Success

• We have a problem here though:
Silent success

• If the test is passed we see nothing
• In the event of some other failure (e.g. a 

bug in your test script) we may have a 
"false success"

Avoid Silent Success

• We should be explicit about success or 
failure

• Use the exit status of ‘diff’:
if diff $f test1.output; then

echo test1 passed
else

echo test1 failed
fi
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Scripting our Script

• We've assumed that our output will be 
viewed by a human

• What if this is one of many tests that are 
being

• executed by another script?
• Should be able to signal success or failure 

to another program!
• Use exit status of our script

Scripting our Script

#!/bin/sh
f=tmpfile
convert <test1.input >$f
if diff $f test1.output; then

echo test1 passed
exit 0 # "true"

else
echo test1 failed
exit 1 # "false"

fi
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Finally

• We can now distinguish between success and 
failure

• Output of our script is either
• test passed
• Or a number of lines (from diff) followed by :
• test failed
• The output of diff helps for diagnosis of failures

Regression testing

• Recall: keep all of tests we come up with
• It's also a good idea to make a test for 

each bug you encounter while debugging
• Keep all these tests together
• After you change the program/fix a bug -

run all tests again
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Regression testing

• We can do this by using one script to run others:
#!/bin/sh
fail=0
for x in test1 test2 test3
do

$x || fail=`expr $fail + 1`
done
echo "$fail tests failed"

Temp Files

• Script has another limitation
– Output goes to “tmpfile”

• Don’t need to keep this file around after 
script terminates

• Bigger problem: can’t use the same name 
in other scripts (may overwrite file!)
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Temporary Files

• Option 1: Current working directory and delete 
file after you are done

• Option 2: Under Unix, the path /tmp is reserved
• for temporary files

– Anybody can write there
– As the name implies these files are temporary
– On most systems, there is no guarantee the file

• will be kept around
– Almost always automatically deleted after 1 week

Temporary Files

• #!/bin/sh
• convert <test1.input >/tmp/tmpfile
• …
• A little better, but we are not sure that 

nobody else is using the name 
“/tmp/tmpfile”

• A unique name would be better
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Unique Temporary Files

• A common approach is to use the process 
id of the shell (the special variable $$)

• This is an integer which is unique in the 
system We typically pick a name (test1) 
and append the

• process id to make it unique:
• /tmp/test1.$$
• or use the method we discussed before

Another Way

• An approach which checks for conflicts:
• gettemp() {
• id=0
• while [ -f $1.$$.$id ]; do
• id=`expr $id + 1`
• done
• echo $1.$$.$id
• }
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sed

• Sed: Stream editor is an editor to modify 
files.

• If you want to write a program to modify 
files, sed is the solution

• Here is a brief introduction to sed, practice 
is the best help.

sed

• sed s/day/night <old >new
• Substitute the word day in the file old by the 

word new and store the results in a file called 
new

• preferably     sed ‘s/day/night/’
• If the string contains “/” then you have to 

escape it or use another delim.
– sed ‘s/\/usr\/local\/bin/\/common\/bin/’ <old >new
– sed ‘s_/usr/local/bin_/common/bin_’ <old >new 
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sed – Using &

• The special character & corresponds to 
the search pattern.

• For example to sed ‘s/[0-9]*/& &/’ doubles 
a number at the beginning of a line

• “123 cat” “123 123 cat”

• If you have many commands and they 
won't fit neatly on one line, you can break 
up the line using a backslash: 
– sed -e 's/a/A/g' \

-e 's/e/E/g' \
-e 's/i/I/g' \
-e 's/o/O/g' \
-e 's/u/U/g' <old >new
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• If you have a large number of sed commands, 
you can put them into a file and use 
– sed -f sedscript <old >new

• where sedscript could look like this: 
– # sed comment - This script changes lower case 

vowels to upper case
s/a/A/g
s/e/E/g
s/i/I/g
s/o/O/g
s/u/U/g


