
1

CSE2301

Unix/Linux
Introduction

Warning: These notes are not complete, it
is a Skelton that will be modified/add-to in
the class. If you want to us them for
studying, either attend the class or get the
completed notes from someone who did

These slides are based on slides by Prof. Wolfgang Stuerzlinger
at York University

Introduction

• In this part, we introduce
– OS (Linux)
– File system
– Shell commands
– Pattern matching
– Shell programming

2

Unix

• What does an OS do?
– File management
– Scheduling
– Memory management
– I/O management

• Examples

Unix

• OS includes
• Kernel: Performs key OS functions
• System programs: various tools
• Shell: Interface to the user

3

Processes

• Each program running is called a process
• Each process has its own identification

PID
• If the program is running twice, even by

the same user, these are 2 different
processes.

File System

• In Unix, the files are organized into a tree
structure with a root named by the
character ’/’.

• Everything in the file system is a file or
subdirectory

4

Our File System

/

bin boot cs home

awk
include cs…

…

aio.h

File System

• File names could be relative (with respect
to the current directory) or using full path
name (relative to /) for example aio.h or
/cs/include/aio.h

• Your home directory is ~username, so in
my case ~aboelaze/test.c is equivalent to
/cs/home/aboelaze/test.c

5

Devices

• /dev contains devices, just like any other
file (fopen, fread, fwrite, ..) but it
communicate with a device.

• /dev/tty
• /dev/null
• /dev/zero

Unix Commands

• ls cp mv rm mkdir cd pwd cat less more
head tail ….

• bg, fg, CTRL-C, CTRL-Z
• kill ps od diff ln echo …
• Redirection and pipes Examples

6

• tigger 215 % ls –las
• total 44
• 4 drwx------ 2 aboelaze faculty 4096 Nov 29 13:44 ./
• 4 drwx------ 9 aboelaze faculty 4096 Nov 29 14:47 ../
• 4 -rw------- 1 aboelaze faculty 184 Nov 18 13:30 data
• 4 -rw------- 1 aboelaze faculty 23 Nov 28 19:52 file1
• 4 -rw------- 1 aboelaze faculty 24 Nov 28 19:52 file2
• 4 -rw------- 1 aboelaze faculty 481 Nov 29 12:27 mergefiles.awk
• 4 -rw------- 1 aboelaze faculty 178 Nov 28 19:32 p1
• 4 -rw------- 1 aboelaze faculty 1245 Nov 18 13:29 prchecks.awk
• 4 -rw------- 1 aboelaze faculty 83 Nov 14 17:46 t
• 4 -rwx------ 1 aboelaze faculty 35 Nov 21 13:08 test.sh*
• 4 -rw------- 1 aboelaze faculty 50 Nov 1 18:31 unmatched
• chmod 744 file What does it mean?
• chmod [ugo][+-][rwx] chmod ug+rw p1

Shell Pattern Matching--Wild Cards

• The character * matches any string of
characters

• ? Matches a single character
• [0-9] matches any digit
• [a-z] matches any small case letter
• \c matches c only
• a|b matches a or b in case expression onlyin case expression only

7

Shell Variables

• set x = 3 -- csh
• x=3 -- sh (no spaces around the “=“)
• echo x
• echo $x what is the difference
• B=5 C=3 D=2 -- That is O.K.
• Valid variables begin with a letter, contains

letters, numbers and _ a5_6

PATH path

• The shell searches in PATH looking for the
command you typed

• echo $PATH .:/usr/local/bin:/usr/ucb:
/usr/bin /usr/etc:/etc:/bin:/usr/bin/X11

• set path = ($path /a/b/c) --csh
• PATH=$PATH:/a/b/c --sh
• Aliases and startup files

8

Shell scripting

#!/cs/local/bin/sh
echo “Hello World”

tigger 397 % script1
Hello World
tigger 398 %

echo -n “Hello
World”

tigger 393 % script1
Hello Worldtigger 394 %

#!/cs/local/bin/sh
echo "Now I will guess your OS"
echo -n "Your OS is : "
uname

tigger 399 % script1
Now I will guess your OS
Your OS is : Linux
tigger 400 %

Shell Scripting

#!/cs/local/bin/sh
echo -n "Please enter your first name : "
read FNAME
echo -n "Last name pelase : "
read LNAME
MESSAGE=" Your name is : $LNAME , $FNAME"
echo "$MESSAGE"

tigger 439 % script3
Please enter your first name : Mokhtar
Last name pelase : Aboelaze
Your name is : Aboelaze , Mokhtar

9

Shell Scripting

#!/cs/local/bin/sh
read FNAME
echo "1-> $FNAME123"
echo "2-> ${FNAME}123"

tigger 454 % script4
abcd
1->
2-> abcd123
tigger 455 %

Shell Scripting

Set the initial value.
myvar=abc
echo "Test 1 ======"
echo $myvar # abc
echo ${myvar} # same as above, abc
echo {$myvar} # {abc}

$ sh var_refs
Test 1 ======
abc
abc
{abc}

echo "Test 2 ======"
echo myvar # Just the text myvar
echo "myvar" # Just the text myvar
echo "$myvar" # abc
echo "\$myvar" # $myvar

Test 2 ======
myvar
myvar
abc
$myvar

echo "Test 3 ======"
echo $myvardef # Empty line
echo ${myvar}def # abcdef

Test 3 ======

abcdef

10

Shell Scripting

echo "Test 4 ======"
echo $myvar$myvar # abcabc
echo ${myvar}${myvar} # abcabc
echo "Test 5 ======"
Reset variable value, with spaces
myvar=" a b c"
echo "$myvar" # a b c
echo $myvar # a b c

Test 4 ======
abcabc
abcabc
Test 5 ======
a b c
a b c

Special variables

• Special variables starts with $
• $? The exit status of the last command
• $$ The process id of the shell
• $* String containing list of all arguments
• $# Number of argument
• $0 Command line

11

Special Substitution

• Various special substitutions:
• ${name-word} - value of name if it exists,
• otherwise “word”
• ${name+word} - “word” if name exists, blank

otherwise
• ${name=word} - if name does not exist, sets
• variable name to word, substitutes value of

name
• ${name?word} - if name does not exist then

prints an error (“word”) then exits shell -
otherwise substitutes value of name

Special substitution

• aboelaze@indigo echo ${v-goodbye}
• goodbye
• aboelaze@indigo v=Hello
• aboelaze@indigo echo ${v-goodbye}
• Hello
• aboelaze@indigo

12

Read

• So if stdin has 'hello there world'
• read a b c
• (a = 'hello', b = 'there', c = 'world')
• read a b
• (a = 'hello', b = 'there world')
• read a b c d
• (a = 'hello', b = 'there', c = 'world’, d is

empty)

Read

• read with just one argument assigns entire line
• read x
• This reads a line from stdin and puts it in ‘x’.
• read is a built-in command with an exit status of 0 on

success, or non-zero on failure or EOF
• When reading input, read by defaults separates words

by space and tab characters
• Can change separator by setting the environment
• variable IFS:
• • IFS=:

13

read

• aboelaze@indigo read x
• Hello and goodbye
• aboelaze@indigo echo $x
• Hello and goodbye
• aboelaze@indigo read x y
• hello and goodbye
• aboelaze@indigo echo $x
• hello
• aboelaze@indigo echo $y
• and goodbye
• aboelaze@indigo

Arithmetic operations

• Does this work?
• LOOP=0
• LOOP=$LOOP+1 ## does not work
• In /bin/sh, must use expr and back-quotes

``!
• LOOP=0
• LOOP=`expr $LOOP + 1`

– increment loop counter

14

Arithmetic Operations

• expr command supports only integer
arithmetic.

• sum=`expr $a + $b`
• diff=`expr $a - $b`
• prod=`expr $a * $b`
• quot=`expr $a / $b`
• remind=`expr $a % $b`

Arithmetic Operations

• Bash has built in support for arithmetic integer
operations, similar to C operators
– Either let or $((…))

• let a=16+5
• let "n=$n-1"
• echo $(($a*$b)) # no quote for * is necessary
• echo $(($a--))
• echo $(($a**3)) # exponentiation

15

Set

• set command re-sets positional
parameters (arguments)

• set apple banana cherry
• echo $1, $2, $3
• set `date`
• echo $1, $2
• a='hello world!'
• set $a vs. set "$a"

Testing

• To test various conditions, we use test
command:

• test arg = arg (‘=‘ compares strings in Bourne
shell)

• test arg != arg
• This commands sets the exit status
• Many other operators
• test -d file
• - true if file is a directory

16

Testing

• In sh, there is a special “shortcut” syntax
for the test command:

• [-d file]
• is identical to test -d file
• Works for all test options (not just -d)
• This form is more commonly used than

‘test’

Testing

• [-d file] - if it is a directory ?
• [-f file] - a regular file ?
• [-r file] - the file readable ?
• [-w file] - the file writable ?
• [-x file] - the file executable ?
• [-s file] - the file has non-zero size ?
• [-L file] - a symbolic link ?
• [-u file] - the file has suid bit ?

17

Logical Operators

• -a logical AND
• -o logical OR
• ! logical NOT
• [-w res.txt –a –w score.txt]
• [-x op1 –o –x op2]
• [! –d Tmp]
• The Bash extended test operator [[…]] allows
• usage of &&,||,>,< in an expression.
• [[$a>$b]]

Test Subtleties

• The following is bad practice:
• [$var = rightvalue] && echo OK
• [$OSTYPE = "linux"] && echo
• Running in Linux
• Why?

18

Test Subtleties

• What if “$var” is blank? After substitution
we get:

• [= rightvalue] && echo OK
• which is a “test” syntax error!
• What if “$var” is “-d”? After substitution:
• [-d = rightvalue] && echo OK
• which does the wrong test!

Test Subtleties

• An old sh programmer’s trick:
• ["X$var" = "Xrightvalue"] && echo OK
• ["X$OSTYPE" = "Xlinux"] && echo
• Running in Linux
• Protects against unusual variable values

19

Test Subtleties

• [-d $dir] || mkdir $dir
• creates the directory $dir if it does not

already exist

Testing

• = - the two strings are equal ?
• != - the two string are not equal ?
• -z - the length of string is zero ?
• -n - the length of string is nonzero ?
• [$EDITOR = "vi"]
• [$USER = "Tom"]
• [-z $EDITOR]
• [$EDITOR] # if string is null

20

Testing

• -eq - two numbers (in strings) are equal?
• -ne - two numbers are not equal?
• -gt - first number is greater than second
• -lt - first number is less than second
• -le - first number is less than or equal to
• second
• -ge - first number is greater than or equal to
• second

Testing

• a=010
• b=10
• [$a = $b]
• # FALSE as two different strings
• [$a -eq $b]
• # TRUE as two numbers

21

Example

read marks
if [$marks –ge 80]; then

grade=A
elif [$marks –ge 70]; then

grade=B
elif [$marks –ge 60]; then

grade=C
else

grade=D
fi
echo $grade

grade = c ?????? testing? Note
that there is no compilation

Example

myprogram < data.in > result.out
if [-s result.out]; then

echo "Output generated !!"
else

echo "empty output!!"
fi
if [-s result.out]; then echo "Output generated

!!"; else echo "empty output!!"; fi

22

Example

for SCRIPT in /path/to/scripts/dir/*
do

if [-f $SCRIPT -a -x $SCRIPT]
then

$SCRIPT
fi

done

Testing

• #!/usr/bin/env bash
• # cookbook filename: strvsnum
• #
• # the old string vs. numeric

comparison dilemma
• #
• VAR1=" 05 "
• VAR2="5“
• printf "%s" "do they -eq as equal? "

• if ["$VAR1" -eq "$VAR2"]
• then
• echo YES
• else
• echo NO
• fi
• printf "%s" "do they = as equal? "
• if ["$VAR1" = "$VAR2"]
• then
• echo YES
• else
• echo NO
• fi

$ bash strvsnum
do they -eq as equal? YES
do they = as equal? NO
$

23

Testing– Dealing with failures

• You want to do 2 commands, but the
second one depends on the success of
the first cd testdir then rm *.dat

• One solution is to use the double
ampersand operator (run the second only
if the first succeed

• $cd testdir && rm *.dat OR
• cd testdir
• if(($?)); then rem *.dat; fi

Testing– Dealing with failures

• Another way is to set the –e option exit the
first time encounter error (i.e. a non zero
exit status) from any command in the
script except while loops and if statement

• set –e
• cd testdir
• rm *.dat

24

Conditions

• We want to do more than just execute other
• programs
• command1 && command2
• executes command1 - if command1 has an exit
• status of 0 (true), then command2 is executed
• Like C, this is short-circuiting

Conditions

• We have an ‘or’ operator as well:
• command1 || command2
• executes command1 - if command1 has an exit
• status of non-zero (false), then command2 is
• executed
• Note that there is no space between the

characters in ‘||’ and ‘&&’

25

Testing– Dealing with failures

• Another way of doing it
• cmd || printf “%b” “cmd failed \n” How does

that work?
• cmd || { printf “%b” “cmd failed \n”; exit;}

