Warning: These notes are not complete, it
is a Skelton that will be modified/add-to in
the class. If you want to us them for
studying, either attend the class or get the
completed notes from someone who did

CSE2301

Unix/Linux
Introduction

These slides are based on slides by Prof. Wolfgang Stuerzlinger
at York University

Introduction

* In this part, we introduce
— OS (Linux)
— File system
— Shell commands
— Pattern matching
— Shell programming

* What does an OS do?
— File management
— Scheduling
— Memory management
— /0 management

» Examples

OS includes

Kernel: Performs key OS functions
System programs: various tools
Shell: Interface to the user

Processes

» Each program running is called a process

» Each process has its own identification
PID

* If the program is running twice, even by
the same user, these are 2 different
processes.

File System

* In Unix, the files are organized into a tree
structure with a root named by the
character '/

» Everything in the file system is a file or
subdirectory

Our File System

File System

» File names could be relative (with respect
to the current directory) or using full path
name (relative to /) for example aio.h or
/cs/include/aio.h

* Your home directory is ~username, so in
my case ~aboelaze/test.c is equivalent to
/cs/home/aboelaze/test.c

Devices

 /dev contains devices, just like any other
file (fopen, fread, fwrite, ..) but it
communicate with a device.

 /devlity
e /dev/null
e /dev/zero

* |Is cp mv rm mkdir cd pwd cat less more
head talil

bg, fg, CTRL-C, CTRL-Z
kill ps od diff In echo ...
Redirection and pipes Examples

tigger o ls —las

« total 44

e 4 drwx------ 2 aboelaze faculty 4096 Nov 29 13:44 ./
e 4 drwx------ 9 aboelaze faculty 4096 Nov 29 14:47 ../

e 4 -rw------- 1 aboelaze faculty 184 Nov 18 13:30 data

e 4 -rw------- 1 aboelaze faculty 23 Nov 28 19:52 filel

o 4 -rw------- 1 aboelaze faculty 24 Nov 28 19:52 file2

o 4 -rw------- 1 aboelaze faculty 481 Nov 29 12:27 mergefiles.awk
e 4 -rw------- 1 aboelaze faculty 178 Nov 28 19:32 p1

e 4 -rw------- 1 aboelaze faculty 1245 Nov 18 13:29 prchecks.awk
o 4 -rw------- 1 aboelaze faculty 83 Nov 14 17:46t

e 4 -rwx------ 1 aboelaze faculty 35 Nov 21 13:08 test.sh*

o 4 -rw------- 1 aboelaze faculty 50 Nov 1 18:31 unmatched

e chmod 744 file What does it mean?
e chmod [ugo][+-][rwx] chmod ug+rw pl

Shell Pattern Matching--Wild Cards

The character * matches any string of
characters

? Matches a single character

[0-9] matches any digit

[a-z] matches any small case letter

\c matches c only

alb matches a or b in case expression only

S RVETELIES

e setx=3 --csh

e x=3 --sh (no spaces around the “=*

* echo x

e echo $x what is the difference

e B=5C=3D=2 --Thatis O.K.

 Valid variables begin with a letter, contains
letters, numbersand _ a5 6

PATH path

* The shell searches in PATH looking for the
command you typed

e echo $PATH .:/usr/local/bin:/usr/uchb:
/usr/bin /usr/etc:/etc:/bin:/usr/bin/X11

* set path = ($path /a/b/c) --csh
 PATH=$PATH:/a/b/c --sh
 Aliases and startup files

Shell scripting

#/cs/local/bin/sh tigger 397 % scriptl

echo “Hello World” I—_|e||o World
tigger 398 %

echo -n “Hello tigger 393 % scriptl

World” Hello Worldtigger 394 %
#!/cs/local/bin/sh tigger 399 % scriptl
echo "Now | will guess your OS" Now | will guess your OS
echo -n"Your OSis:" Your OS is : Linux
uname tigger 400 %

Shell Scripting

#l/cs/local/bin/sh

echo -n "Please enter your first name : "

read FNAME

echo -n "Last name pelase : "

read LNAME

MESSAGE=" Your name is : $LNAME , $SFNAME"
echo "$MESSAGE"

tigger 439 % script3

Please enter your first name : Mokhtar
Last name pelase : Aboelaze

Your name is : Aboelaze , Mokhtar

Shell Scripting

tigger 454 % script4

#!/cs/local/bin/sh
read FNAME i‘f’fd
echo "1-> $FNAME123 2> abcd123

echo "2-> ${FNAME}123" tigger 455 %

Shell Scripting

Set the initial value.
$sh var_refs

myvar=abc

echo "Test 1 ======" Test1======
echo $myvar # abc abc

echo ${myvar} # same as above, abc abe

echo {$myvar} # {abc} {abc}

echo "Test 2 ======" Test 2 ======
echo myvar # Just the text myvar myvar

echo "myvar" # Just the text myvar myvar

echo "$myvar" # abc abc

echo "\$myvar" # $myvar $myvar

echo "Test 3 ======" Test 3 ======

echo $myvardef # Empty line
echo ${myvar}def # abcdef abedef

Shell Scripting

echo "Test 4 ======" Test 4 ======
echo $myvar$myvar # abcabc abcabc

echo ${myvar}${myvar} # abcabc abcabc

echo "Test 5 ======" Test 5 ======
Reset variable value, with spaces a b c
myvar="a b c" abc

echo "$myvar" #a b c

echo $myvar #abc

Special variables

» Special variables starts with $

« $? The exit status of the last command
« $$ The process id of the shell

« $* String containing list of all arguments
$# Number of argument

$0 Command line

Special Substitution

Various special substitutions:
${name-word} - value of name if it exists,
otherwise “word”

${name+word} - “word” if name exists, blank
otherwise

${name=word} - if name does not exist, sets

variable name to word, substitutes value of
name

${name?word} - if name does not exist then
prints an error (“‘word”) then exits shell -
otherwise substitutes value of name

Special substitution

aboelaze@indigo echo ${v-goodbye}
goodbye

aboelaze@indigo v=Hello
aboelaze@indigo echo ${v-goodbye}
Hello

aboelaze@indigo

11

Read

e So if stdin has 'hello there world'

ereadabc

* (a ="hello’, b ='there', ¢ = 'world")

readab

* (a ="hello’, b = 'there world")

readabcd

* (a ="hello', b ="'there’, c ="'world’, d is
empty)

Read

» read with just one argument assigns entire line
* read x
» This reads a line from stdin and puts it in ‘X’

« read is a built-in command with an exit status of 0 on
success, or non-zero on failure or EOF

* When reading input, read by defaults separates words
by space and tab characters

» Can change separator by setting the environment
* variable IFS:
o o |FS=:

12

read

» aboelaze@indigo read x

» Hello and goodbye

« aboelaze@indigo echo $x
» Hello and goodbye

» aboelaze@indigo read x y
* hello and goodbye

e aboelaze@indigo echo $x
* hello

« aboelaze@indigo echo $y
» and goodbye

* aboelaze@indigo

Arithmetic operations

* Does this work?

« LOOP=0

« LOOP=$LOOP+1 ## does not work

 In /bin/sh, must use expr and back-quotes

\\I

 LOOP=0
o« LOOP="expr $LOOP + 1°
—increment loop counter

Arithmetic Operations

e expr command supports only integer
arithmetic.

e sum="expr $a + $b"

o diff="expr $a - $b"

o prod="expr $a * $b"

e quot="expr $a/ $b"

e remind="expr $a % $b"

Arithmetic Operations

» Bash has built in support for arithmetic integer
operations, similar to C operators
— Either let or $((...))

* let a=16+5

e let "n=%n-1"

e echo $(($a*$b)) # no quote for * is necessary
» echo $(($a--))

» echo $(($a**3)) # exponentiation

Set

e set command re-sets positional
parameters (arguments)

» set apple banana cherry
» echo $1, $2, $3

e set date

e echo $1, $2

 a='hello world!"

» set $a vs. set "$a"

Testing

» To test various conditions, we use test
command:

» test arg = arg (‘=" compares strings in Bourne
shell)

* test arg I=arg

» This commands sets the exit status
» Many other operators

» test -d file

» -true if file is a directory

15

* In sh, there is a special “shortcut” syntax
for the test command:

[-d file]
is identical to test -d file
Works for all test options (not just -d)

This form is more commonly used than
‘test’

o [-d file] - ifitis a directory ?

o [-f file] - aregular file ?

o [-r file] - the file readable ?

o [-w file] - the file writable ?

* [-x file] - the file executable ?

» [-s file] - the file has non-zero size ?
e [-L file] - a symbolic link ?

e [-u file] - the file has suid bit ?

16

Logical Operators

-a logical AND

-0 logical OR

» I'logical NOT

e [-w res.txt —a —w score.txt]

e [-xopl—-0—-Xxo0p2]

e [!—=d Tmp]

* The Bash extended test operator [[...]] allows
» usage of &&,||,>,<in an expression.

* [[$a>$b]]

Test Subtleties

» The following is bad practice:

e [$var =rightvalue] && echo OK
o [$OSTYPE ="linux"] && echo
* Running in Linux

e Why?

17

Test Subtleties

What if “$var” is blank? After substitution
we get:

[=rightvalue] && echo OK

which is a “test” syntax error!

What if “$var” is “-d"? After substitution:
[-d =rightvalue] && echo OK

which does the wrong test!

Test Subtleties

» An old sh programmer’s trick:

o ["X$var" = "Xrightvalue"] && echo OK
o ["X$OSTYPE" ="Xlinux"] && echo

* Running in Linux

* Protects against unusual variable values

18

Test Subtleties

o [-d $dir] || mkdir $dir

 creates the directory $dir if it does not
already exist

= - the two strings are equal ?

I= - the two string are not equal ?
-z - the length of string is zero ?

-n - the length of string is nonzero ?
[$EDITOR ="vi"]

e [SUSER ="Tom"]

* [-z $SEDITOR]

e [SEDITOR] # if string is null

19

* -eq - two numbers (in strings) are equal?

* -ne - two numbers are not equal?

e -gt - first number is greater than second

* -It - first number is less than second

» -le - first number is less than or equal to

» second

* -ge - first number is greater than or equal to
» second

 a=010

* b=10

[$a=%b]

FALSE as two different strings
o [$a-eq $b]

* # TRUE as two numbers

20

Example

read marks

if b$marks —ge 80]; then
ade=A

if [$marks —ge 70]; then
rade=B

elif [$marks —ge 60 |; then that there is no compilation
grade=C

else
grade=D

fi

echo $grade

Example

myprogram < data.in > result.out

if [-s result.out |; then
echo "Output generated !!"

else
echo "empty output!!”

fi

if [-s result.out |]; then echo "Output generated
" else echo "empty output!!"; fi

21

Example

for SCRIPT in /path/to/scripts/dir/*

do

if [-f $SCRIPT -a -x $SCRIPT |

then
$SCRIPT

done

Testing

#!/usr/bin/env bash
cookbook filename: strvsnum
#

the old string vs. numeric
comparison dilemma

#
VAR1="05"
VAR2="5*

printf "%s" "do they -eq as equal? "

$ bash strvsnum

do they -eq as equal? YES
do they = as equal? NO

$

if ["SVAR1" -eq "$VAR2"]
then

echo YES

else

echo NO

fi

printf "%s" "do they = as equal? "

if ["SVARL" = "$VAR2"]
then

echo YES

else

echo NO

fi

22

Testing— Dealing with failures

* You want to do 2 commands, but the
second one depends on the success of
the first cd testdir then rm *.dat

* One solution is to use the double
ampersand operator (run the second only
if the first succeed

e $cd testdir && rm *.dat OR
e cd testdir
« if(($?)); then rem *.dat; fi

Testing— Dealing with failures

» Another way is to set the —e option exit the
first time encounter error (i.e. a non zero
exit status) from any command in the
script except while loops and if statement

e set—e
e cd testdir
e rm *.dat

23

Conditions

We want to do more than just execute other
programs

commandl && command?2

executes commandl - if commandl has an exit
status of O (true), then command2 is executed
Like C, this is short-circuiting

Conditions

We have an ‘or’ operator as well:

commandl || command?2

executes commandl - if commandl has an exit
status of non-zero (false), then command2 is
executed

Note that there is no space between the
characters in ‘|| and ‘&&’

24

Testing— Dealing with failures

» Another way of doing it

e cmd || printf “%b” “cmd failed \n” How does
that work?

o cmd || { printf “%b” “cmd failed \n”; exit;}

25

