
CSE2301
Lab 1

FALL 2009

In this lab, you will be introduced to the Linux operating system. The basic
commands will be presented in this lab. By the end of you alb, you will be asked
to perform simple operations and submit a script of the terminal session.

What is a shell?

A shell is th interface between you and the computer. It accepts commands typed
by the user and then uses the operating system in order to execute these
commands. For example the command could be ls followed by enter

sh-3.00$ ls
emp.data f2 file1 one_liners.log one_liners.pdf p1 p3
f1 f3 ile2 one_liners.odt one_liners.ps p2
sh-3.00$

Before you enter ls the shell displayed the prompt (in this case sh-3.00$) and sits
patiently waiting for your input. After typing ls and pressing enter, it takes the
command (ls – listing all the files in the current directory) and runs it (using the
OS) producing the shown output.
Where the shell can find the program ls to run? There is a variable called PATH
(We will discuss how to set PATH variable later). This variable lets the shell looks
for any command that you type in specific places, if the command is not in one of
the places defined by PATH, then the shell displays a message on the form (The
exact form depends on what shell you are running on your system)

sh-3.00$ Command not found

ls is one of many basic commands that you can use to manipulate your files. The
best way to know how to use a command is to use the man command (short for
manual). For example type man ls at your shell prompt and you get a description
of the ls command and the options you can use with it.

Do man, man -l, man -s, man -a, and man -las what do you get?

What are the different kinds of shells?

There are many shells that you can use on any Unix/Linux system. We will briefly
introduce these shells and compare between them. There is a shell that is started

 ... aboelaze

hen you login, that is the default shell and is set by your system administrator.
You can start other shells, or you can change your default shell later.

The Bourne Shell

Designed by Stephen Bourne of AT&T Bell Laboratories and released in 1977. The
Bourne shell, or sh as it is widely known is considered to be the original shell
(although it was actually a replacement for Thompson Shell. It is considered to be
a standard on any UNIX system. The Bourne shell is considered the least common
denominator for shells. For truly portable scripts, use the Bourne Shell and it will
run on many shells.

The C Shell

Designed by Bill Joy at the University of California at Berkeley for the BSD Unix.
Its syntax resembles that of C, hence the name. It introduced new features to the
shell like the history substitution (!! to repeat the last command) and the ~
expansion for home directory lookup.
There are some syntax difference between csh and sh, for example in sh we set a
variable as “a=b” while in csh “set a=b”

The Korn Shell

Developed by David Korn of AT&T Bell Laboratories for its System V Unix as a
response to the csh. It has many of the features of csh but is backward
compatible with sh. The Korn shell has been standardized as a part of POSIX

The Bourne Again Shell – Bash

The Bourne Again Shell or bash has been developed for the GNU project and is
mainly a response to the Korn shell. It has many features in the Korn shell, but is
backward compatible with the original Bourne Shell.

The Extended C shell tcsh

The tcsh extends the original c shell by adding file name completion and
command line editing. It is also backward compatible with csh.

Unix File System

The Unix/Linux file system is organized on the form of a tree. The root directory
is defined as “/” without the quotation marks. You can define files or directories
relative to the directory you are in, or as an absolute starting from the / root

 ... aboelaze

directory. An example of a Unix directory tree is shown below.

For example when I refer to the directory “courses” I can refer to it as
~/courses (~ means home directory) or the full path
/home/aboelaze/courses. The command pwd (print working directory) displays
the name of the directory you are currently in.

File Protection

In Unix/Linux each file has an access rights that are determined by the access
bits. For example when you type ls -s filename

tigger 127 % ls -l abs.txt
-rwx------ 1 aboelaze faculty 1066 Nov 15 2005 abs.txt*
tigger 128 %

The access bits in this case is – rwx------
The first dash states that the file is a regular file and not a directory (it would be
d if it is a directory). The following 9 characters are divided into three groups with
3 character per group. The groups determine the access right for user (owner),
group and others. In each group the right are rwx (for read, write, and execute).
For the above example, the owner has the right to read, write (modify), or
execute the file. The group and other do not have access rights at all to the file.
Access bits on the form rwxr-xr-- means the owner have the right to read, write,
and execute the file. People in the same group as the owner have the right to

/ the root directory

bin boot core home dev etc home lib ... usr ... var

X11R6 bin etc ...
cp csh date df

cpp evms firmware ..

libe2fsim.1.2.1.so

 ... aboelaze

bin courses ... private

CSE2031 CSE3201 CSE4201

F08 F09

read and execute the file (no write) stated as r-x, while others have the right to
read the file but not write it or execute it.

Basic Unix Commands

Login and open an xterm. First to know your login shell, echo the login shell
variable

tigger 207 % echo $SHELL
/cs/local/bin/tcsh
tigger 208 %

That means that I am using a tcsh shell. To explain what the commands mean,
echo echoes what follows it verbatim if you say echo bla bla bla, then “bla bla bla”
will be displayed on the screen. However the dollar sign before SHELL tells the
shell do not just echo the phrase SHELL but the variable named SHELL which is a
shell variable holds the name of the login shell.
Unix/Linus commands are on the form

commands arguments
or
commands options arguments

For example when we did ls commands before, that is an example of a command
without any arguments. We can do

ls file lists the named file if it exists
or
ls directory lists the contents of the directory if exists

there are a lot of options that could be used with ls (-a -s -l -f) do man ls to
check all the options.

Some other commands
rm removes (deletes) a file or a directory
mv moves a file or director
cp copies a file
ps lists the running processes
kill kills a process (kill -9 for maximum effects)

for example try to man uname (another Linux command), here is part of the man
pages for uname.
After you man uname, try it for different options as given below.

tigger 119 % man uname
UNAME(1) User Commands UNAME(1)

NAME
 uname - print system information

SYNOPSIS
 uname [OPTION]...

DESCRIPTION
 Print certain system information. With no OPTION, same as -s.

 -a, --all
 print all information, in the following order:

 -s, --kernel-name
 print the kernel name

 -n, --nodename
 print the network node hostname

 -r, --kernel-release
 print the kernel release

 -v, --kernel-version
 print the kernel version

 -m, --machine
 print the machine hardware name

 -p, --processor
 print the processor type

 -i, --hardware-platform
 print the hardware platform

The command grep
grep, as its name indicates, greps a specific pattern from a file and display the
lines containing that line (by default). It has many options check man grep for
complete list of options.

grep book file1

display all the lines in file1 that include the string book.

Another useful command is wc (short for word count). Wc counts the number of
characters, words, and lines in a file.

tigger 157 % wc temp
 3 32 169 temp
tigger 158 %

That means the file temp has three lines, 32 words, and 169 characters.

Redirection and Pipes

By default, Unix/Linux uses three input/output channels

 0=stdin (standard input, by default the keyboard)
 1=stdout (standard output, by default the monitor)
 2=stderr (standard error, by default the monitor)

For example when I type cat filename the file is displayed on the monitor. If there
is an error of any type (for example the file does not exist, the error message is
displayed on the monitor too.

sh-3.00$ cat hgfhgfjhf
cat: hgfhgfjhf: No such file or directory
sh-3.00$

by directing the standard error to cat.err

sh-3.00$ cat jhdsjhgfhg 2>cat.err
sh-3.00$ more cat.err
cat: jhdsjhgfhg: No such file or directory
sh-3.00$

we can redirect inputs (<) and outputs (>)
for example

cat filename 1>out.txt 2>err.txt

cats the file filename and stores it in a file called out.txt, if there is any error
message it will be stored in a file err.txt instead of being displayed on the monitor.
>> means to append the output the the file (> deletes the contents of the file
before sending the output to it).
<< string means the string is considered to be the end of input and on a line by
itself (default CTRL-D)

tigger 113 % cat <<XX
? first line
? second line
? last line XX

? XX
first line
second line
last line XX
tigger 114 %

Pipes are used to send the output of a program to the input of another program.
For example the command

ls |less

ls by itself display the directory on the monitor. The “|” pipe the output of the ls
to the input of another program called less (less displays its input on the screen).
So what is the difference between the above command and simple ls. One thing
about less is that it display the contents a screen by screen, so a screen-full of file
names will be shown, then it waits for any input character

Finally the command script. Script makes a copy of your terminal session (do
man script for more details).
The way script works is as follows. When you type script, a file is created that will
store every command you type and every thing that is displayed on the screen.
So for example if you type ls, then the ls command together with the displayed
results will be stored in the script file. You can specify the name of the file with
the script command. If you did not specify the file, the default file is typescript.
Do not forget to exit the scripting session using exit command.
An example is shown below.

tigger 106 % script myscriptfile
Script started, file is myscriptfile
tigger 101 % date
Fri Aug 14 14:55:34 EDT 2009
tigger 102 % exit
exit
Script done, file is myscriptfile
tigger 107 % cat myscriptfile
Script started on Fri Aug 14 14:55:26 2009
tigger 101 % date
Fri Aug 14 14:55:34 EDT 2009
tigger 102 % exit
exit

Script done on Fri Aug 14 14:55:39 2009
tigger 108 %

Starting the script, then you
executed the date command,
the result is shown on the
screen

Exit to end the scripting
session

Now, we are out of the
scripting session, the
contents is stored in a file
called myscriptfile. Cat
this file to see the contents
of the session

Exercise
Start a script session to a file called myscript0

Type and execute a Linux command to do the following

1. Count the numbers of files in your current directory
2. Count the number of files in your current directory that includes the phrase

“HW”
3. Repeat the previous command but consider both capital and small letters

(i.e. the files that contains HW, Hw, hW, and hw).
4. A command to count the number of lines, that you input from the standard

input, that contains the string book. The number should be displayed after
you finish entering text.

5. Submit your script file to L1

do man submit for instructions on submissions

