
9/17/2009

1

Recursion and Logarithms

CSE 2011
Fall 2009

17 September 2009 1

Recursion

In some problems, it may be natural to define
the problem in terms of the problem itselfthe problem in terms of the problem itself.
Recursion is useful for problems that can be
represented by a simpler version of the same
problem.
Example: the factorial function

6! = 6 * 5 * 4 * 3 * 2 * 1

2

We could write:
6! = 6 * 5!

9/17/2009

2

Recursion (2)

Recursion is one way to decompose a task into
smaller subtasks. At least one of the subtasks is
a smaller example of the same task.

The smallest example of the same task has a
non-recursive solution.

3

Example: the factorial function
n! = n*(n-1)! and 1! = 1

Example: Factorial Function

In general, we can express the factorial
function as follows:function as follows:

n! = n*(n-1)!
Is this correct? Well… almost.

The factorial function is only defined for
positive integers. So we should be more

4

p g
precise:

f(n) = 1 if n = 1
= n*f(n-1) if n > 1

9/17/2009

3

Factorial Function: Pseudo-code

int recFactorial(int n){
if(n == 0)

return 1;
else

return n * recFactorial(n-1);
}

5

}

recursion means that a function calls itself

Visualizing Recursion

Recursion trace
Example recursion trace:

Recursion trace
A box for each
recursive call
An arrow from each
caller to callee
An arrow from each

recursiveFactorial(4)

recursiveFactorial(3)

recursiveFactorial(2)

call

call

call return 1*1 = 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24 final answercall

Using Recursion 6

An arrow from each
callee to caller
showing return value

recursiveFactorial(1)

recursiveFactorial(0)

return 1

call

call

return 1 1 = 1

9/17/2009

4

Recursive vs. Iterative Solutions

For certain problems (such as the factorial function), a
recursive solution often leads to short and elegant code.

int fac(int numb) {
if (numb == 0)
return 1;

else

int fac(int numb){
int product=1;
while(numb>1){
product *= numb;

b

g
Compare the recursive solution with the iterative solution:

7

return
(numb*fac(numb-1));

}

numb--;
}
return product;

}

A Word of Caution

To trace recursion, function calls operate as a stack –
the new function is put on top of the caller.the new function is put on top of the caller.
We have to pay a price for recursion:

calling a function consumes more time and
memory than adjusting a loop counter.
high performance applications (graphic action
games, simulations of nuclear explosions) hardly
ever use recursion.

8

In less demanding applications, recursion is an
attractive alternative for iteration (for the right
problems!)

9/17/2009

5

Infinite Loops

If we use iteration, we must be careful not to create an
infinite loop by accidentinfinite loop by accident.

for (int incr=1; incr!=10; incr+=2)
...

int result = 1;
hil (lt > 0){

Oops!Oops!

9

while(result > 0){
...
result++;

} Oops!Oops!

Infinite Recursion

Similarly, if we use recursion, we must be careful not
to create an infinite chain of function calls.

int fac(int numb){
return numb * fac(numb-1);

}

int fac(int numb){

Oops!Oops!
No termination No termination

conditioncondition

10

int fac(int numb){
if (numb==0)

return 1;
else

return numb * fac(numb+1);
} Oops!Oops!

9/17/2009

6

Tips

We must always make sure that the recursion
b tt tbottoms out:

A recursive function must contain at least one
non-recursive branch.

11

The recursive calls must eventually lead to a
non-recursive branch.

General Form of Recursion

How to write recursively?

int recur_fn(parameters){
if (stopping_condition)

return stopping_value;
// other stopping conditions if needed
return function of recur_fn(revised_parameters)

}

12

}

9/17/2009

7

Example: Sum of an Array

Algorithm LinearSum(A, n):
I t

Example recursion trace:

Input:
A integer array A and an integer

n = 1, such that A has at least
n elements

Output:
The sum of the first n integers in
A

if n = 1 then
return A[0]

LinearSum(A,5)

LinearSum(A,3)

LinearSum(A,4)

call

call

call return 4 + A[1] = 4 + 3 = 7

return 7 + A[2] = 7 + 6 = 13

return 13 + A[3] = 13 + 2 = 15

call return 15 + A[4] = 15 + 5 = 20

Using Recursion 13

return A[0]
else
return LinearSum(A, n - 1)

+ A[n - 1]
LinearSum(A,1)

LinearSum(A,2)

call return A[0] = 4

Example: Reversing an Array

Algorithm ReverseArray(A, i, j):
Input: An array A and nonnegative integerInput: An array A and nonnegative integer

indices i and j
Output: The reversal of the elements in A

starting at index i and ending at j
if i < j then

Swap A[i] and A[j]

Using Recursion 14

Swap A[i] and A[j]
ReverseArray(A, i + 1, j - 1)

return

9/17/2009

8

Defining Arguments for Recursion

In creating recursive methods, it is important to
define the methods in ways that facilitatedefine the methods in ways that facilitate
recursion.
This sometimes requires we define additional
paramaters that are passed to the method.
For example, we defined the array reversal
method as ReverseArray(A i j) not

Using Recursion 15

method as ReverseArray(A, i, j), not
ReverseArray(A).

Linear Recursion

The above 2 examples use linear
irecursion.

16

9/17/2009

9

Linear Recursion (2)

Test for base cases.
Begin by testing for a set of base cases (thereBegin by testing for a set of base cases (there
should be at least one).
Every possible chain of recursive calls must
eventually reach a base case, and the handling of
each base case should not use recursion.

Recur once.
Perform a single recursive call. (This recursive step
may involve a test that decides which of several

Using Recursion 17

may involve a test that decides which of several
possible recursive calls to make, but it should
ultimately choose to make just one of these calls
each time we perform this step.)
Define each possible recursive call so that it makes
progress towards a base case.

Tail Recursion

Tail recursion occurs when a linearly recursive
method makes its recursive call as its last step.
The array reversal method is an example.
Such methods can be easily converted to non-
recursive methods (which saves on some resources).
Example:
Algorithm IterativeReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index i

d di t j

Using Recursion 18

and ending at j
while i < j do

Swap A[i] and A[j]
i = i + 1
j = j - 1

return

9/17/2009

10

Binary Recursion

Binary recursion occurs whenever there are
two recursive calls for each non base casetwo recursive calls for each non-base case.

Example: binary search

Using Recursion 19

Example: Binary Search
Search for an element in an ordered array

Sequential searchSequential search
Binary search

Binary search
Compare the search element with the middle element
of the array

20

of the array
If not equal, then apply binary search to half of the
array (if not empty) where the search element would
be.

9/17/2009

11

Binary Search with Recursion
// Searches an ordered array of integers using recursion
int bsearchr(const int data[], // input: array

int first, // input: lower bound
int last, // input: upper bound
int value // input: value to find

)// return index if found, otherwise return –1

{ int middle = (first + last) / 2;
if (data[middle] == value)

return middle;
l if (fi t > l t)

21

else if (first >= last)
return -1;

else if (value < data[middle])
return bsearchr(data, first, middle-1, value);

else
return bsearchr(data, middle+1, last, value);

}

Another Binary Recusive Method
Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: An array A and integers i and nInput: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i]
return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

Example trace:

0, 8

Using Recursion 22

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1

9/17/2009

12

Multiple Recursion

Multiple recursion: makes potentially many
i ll (t j t t)recursive calls (not just one or two).

Not covered in this course.

Using Recursion 23

Running Time of Recursive Methods

Could be just a hidden “for”/ “while” loop
See “Tail Recursion” slide

Logarithmic (next)
Examples: binary search, exponentiation

Solving a recurrence
Example: merge sortExample: merge sort

24

9/17/2009

13

Logarithms

CSE 2011
Fall 2009

25

Logarithmic Running Time

An algorithm is O(logN) if it takes constant (O(1))
time to cut the problem size by a fraction (e gtime to cut the problem size by a fraction (e.g.,
½).

An algorithm is O(N) if constant time is required
to merely reduce the problem by a constant
amount (e g by 1)

26

amount (e.g., by 1).

9/17/2009

14

Binary Search
int binarySearch (int[] a, int x)

{

/*1*/ i t l 0 hi h i () 1/*1*/ int low = 0, high = a.size() - 1;

/*2*/ while (low <= high)

{

/*3*/ int mid = (low + high) / 2;

/*4*/ if (a[mid] < x)

/*5*/ low = mid + 1;

/*6*/ else if (x < a[mid])

/*7*/ high = mid - 1;

27

else

/*8*/ return mid; // found

}

/*9*/ return NOT_FOUND

}

Exponentiation xn

long exp(long x, int n)

{

/*1*/ if (n==0)

/*2*/ return 1;

/*3*/ if (n==1)

/*4*/ return x;

/*5*/ if (isEven(n))

/*6*/ return exp(x*x, n/2);

else

28

/*7*/ return exp(x*x, n/2)*x;

}

9/17/2009

15

Euclid’s Algorithm

Computing the greatest common divisorComputing the greatest common divisor
(GCD) of two integers

long gcd (long m, long n) // assuming m>=n
{
/*1*/ while (n!=0)

{
/*2*/ long rem = m%n;

29

/ 2 / long rem m%n;
/*3*/ m = n;
/*4*/ n = rem;

}
/*5*/ return m;
}

Next time …

Merge Sort
Arrays, Lists (chapter 3)

30

