Recursion and Logarithms

CSE 2011
Fall 2009

Recursion

- In some problems, it may be natural to define the problem in terms of the problem itself.
Recursion is useful for problems that can be represented by a simpler version of the same problem.
Example: the factorial function
$6!=6$ * 5 * 4 * 3 * 2 * 1
We could write:
$6!=6$ * 5 !

Recursion (2)

Recursion is one way to decompose a task into smaller subtasks. At least one of the subtasks is a smaller example of the same task.

- The smallest example of the same task has a non-recursive solution.

Example: the factorial function

$$
n!=n *(n-1)!\text { and } 1!=1
$$

Example: Factorial Function

In general, we can express the factorial function as follows:

$$
n!=n *(n-1)!
$$

Is this correct? Well... almost.

The factorial function is only defined for positive integers. So we should be more precise:

$$
\begin{aligned}
f(n) & =1 & & \text { if } n=1 \\
& =n^{*} f(n-1) & & \text { if } n>1
\end{aligned}
$$

Factorial Function: Pseudo-code

```
int recFactorial(int n){
    if(n == 0)
        return 1;
    else
        return n * recFactorial(n-1);
}
```

recursion means that a function calls itself

Visualizing Recursion

Recursion trace
A box for each recursive call An arrow from each caller to callee An arrow from each callee to caller showing return value

Recursive vs. Iterative Solutions

For certain problems (such as the factorial function), a recursive solution often leads to short and elegant code. Compare the recursive solution with the iterative solution:

```
int fac(int numb) {
    if (numb == 0)
        return 1;
    else
        return
    (numb*fac(numb-1));
}
```

```
int fac(int numb){
    int product=1;
    while(numb>1){
        product *= numb;
        numb--;
    }
    return product;
}
```


A Word of Caution

- To trace recursion, function calls operate as a stack the new function is put on top of the caller.
We have to pay a price for recursion:
calling a function consumes more time and memory than adjusting a loop counter.
high performance applications (graphic action games, simulations of nuclear explosions) hardly ever use recursion.
In less demanding applications, recursion is an attractive alternative for iteration (for the right problems!)

Infinite Loops

If we use iteration, we must be careful not to create an infinite loop by accident.
for (int incr=1; incr!=10; incr+=2)
int result = 1;
while(result ≥ 0)\{
\}
..
..
result++;
result++;
\}
Oops!

Infinite Recursion

Similarly, if we use recursion, we must be careful not to create an infinite chain of function calls.

```
int fac(int numb){
        return numb * fac(numb-1): No termination
}
Oops!
    condition
int fac(int numb){
    if (numb==0)
        return 1;
    else
        return numb * fac(numb+1);
}

\section*{Tips}

We must always make sure that the recursion bottoms out:

A recursive function must contain at least one non-recursive branch.

The recursive calls must eventually lead to a non-recursive branch.

\section*{General Form of Recursion}
- How to write recursively?
int recur_fn(parameters)\{
if (stopping_condition)
return stopping_value;
// other stopping conditions if needed
return function of recur_fn(revised_parameters)
\}

\section*{Example: Sum of an Array}

Algorithm LinearSum \((A, n)\) : Input:
A integer array \(A\) and an integer \(n=1\), such that \(A\) has at least \(n\) elements
Output:
The sum of the first \(n\) integers in A
if \(n=1\) then
return \(A[0]\)
else
return LinearSum \((A, n-1)\)
Example recursion trace:
\[
+A[n-1]
\]


\section*{Example: Reversing an Array}

Algorithm ReverseArray(A, i, j):
Input: An array \(A\) and nonnegative integer indices \(i\) and \(j\)
Output: The reversal of the elements in \(A\)
starting at index \(i\) and ending at \(j\) if \(i<j\) then

Swap \(A[i]\) and \(A[J]\)
ReverseArray \((A, i+1, j-1)\)
return

\section*{Defining Arguments for Recursion}

In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
This sometimes requires we define additional paramaters that are passed to the method.
For example, we defined the array reversal method as ReverseArray ( \(A, i, j\) ), not ReverseArray \((A)\).

\section*{Linear Recursion}


The above 2 examples use linear recursion.

\section*{Linear Recursion (2)}

\section*{Test for base cases.}

Begin by testing for a set of base cases (there should be at least one).
Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.

\section*{Recur once.}

Perform a single recursive call. (This recursive step may involve a test that decides which of several possible recursive calls to make, but it should ultimately choose to make just one of these calls each time we perform this step.)
Define each possible recursive call so that it makes progress towards a base case.

\section*{Tail Recursion}


Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to nonrecursive methods (which saves on some resources).
- Example:

Algorithm IterativeReverseArray \((A, i, j)\) :
Input: An array \(A\) and nonnegative integer indices \(i\) and \(j\)
Output: The reversal of the elements in \(A\) starting at index \(i\) and ending at \(j\)
while \(i<j\) do
Swap \(A[i]\) and \(A[j]\)
\(i=i+1\)
\(j=j-1\)
return

\section*{Binary Recursion}

Binary recursion occurs whenever there are two recursive calls for each non-base case.

Example: binary search

\section*{Example: Binary Search}

Search for an element in an ordered array
Sequential search
Binary search

Binary search
Compare the search element with the middle element of the array
O If not equal, then apply binary search to half of the array (if not empty) where the search element would be.

\section*{Binary Search with Recursion}
// Searches an ordered array of integers using recursion int bsearchr(const int data[], // input: array int first, // input: lower bound int last, // input: upper bound int value // input: value to find )// return index if found, otherwise return -1
\{ int middle = (first + last) / 2;
if (data[middle] == value)
return middle;
else if (first >= last)
return -1;
else if (value < data[middle])
return bsearchr(data, first, middle-1, value);
else
return bsearchr(data, middle+1, last, value);
\}

\section*{Another Binary Recusive Method}

Problem: add all the numbers in an integer array A:
Algorithm BinarySum \((A, i, n)\) :
Input: An array \(A\) and integers \(i\) and \(n\)
Output: The sum of the \(n\) integers in \(A\) starting at index \(i\)
if \(n=1\) then
return \(A[i]\)
return BinarySum(A, \(i, n / 2)+\operatorname{BinarySum}(A, i+n / 2, n / 2)\)
- Example trace:


\section*{Multiple Recursion}

Multiple recursion: makes potentially many recursive calls (not just one or two).

Not covered in this course.

\section*{Running Time of Recursive Methods}

Could be just a hidden "for"/ "while" loop
See "Tail Recursion" slide
- Logarithmic (next)

Examples: binary search, exponentiation
Solving a recurrence
Example: merge sort


\section*{Logarithmic Running Time}

An algorithm is \(\mathrm{O}(\log \mathrm{N})\) if it takes constant \((\mathrm{O}(1))\) time to cut the problem size by a fraction (e.g., \(1 / 2\) ).

An algorithm is \(\mathrm{O}(\mathrm{N})\) if constant time is required to merely reduce the problem by a constant amount (e.g., by 1 ).

\section*{Binary Search}
```

int binarySearch (int[] a, int x)
{
/*1*/ int low = 0, high = a.size() - 1;
/*2*/ while (low <= high)
{
int mid = (low + high) / 2;
if (a [mid] < x)
low = mid + 1;
else if (x < a[mid])
high = mid - 1;
else
return mid; // found
}
/*9*/ return NOT_FOUND
}

```

\section*{Exponentiation \(x^{n}\)}

long \(\exp (\) long \(x\), int \(n)\)
\{
/*1*/ if ( \(\mathrm{n}==0\) )
/*2*/ return 1;
\(/ * 3 * /\) if ( \(\mathrm{n}==1\) )
/*4*/ return \(x\);
/*5*/ if (isEven(n))
/*6*/ return \(\exp \left(x^{*} \mathrm{x}, \mathrm{n} / 2\right)\);
else
/*7*/ return \(\exp (x * x, n / 2) * x\);
\}

\section*{Euclid's Algorithm}
- Computing the greatest common divisor (GCD) of two integers
```

long gcd (long m, long n) // assuming m>=n
{
/*1*/ while (n!=0)
/*2*/ long rem = m%n;
/*3*/ m = n;
/*4*/ n = rem;
}
/*5*/ return m;
}

```

Next time ...

Merge Sort
Arrays, Lists (chapter 3)```

