
9/22/2009 12:51 PM 1

Merge Sort

CSE 2011
Fall 2009

Goals

Divide-and-conquer approach
Solving recurrences
One more sorting algorithm

2

3

Merge Sort: Main Idea

Based on divide-and-conquer strategy
Divide the list into two smaller lists of about
equal sizes.
Sort each smaller list recursively.
Merge the two sorted lists to get one sorted list.

How do we divide the list? How much time needed?
How do we merge the two sorted lists? How much

time needed?

4

Dividing

If the input list is a linked list, dividing takes Θ(N) time:
Scan the linked list, stop at the ⎣N/2⎦th entry and cut
the link.

If the input list is an array A[0..N-1]: dividing takes O(1)
time:

Represent a sub-array by two integers left and right.
To divide A[left .. right], compute center=(left+right)/2
and obtain A[left .. center] and A[center+1 .. right]

5

Merge Sort: Algorithm

Divide-and-conquer strategy
recursively sort the first half and the second half
merge the two sorted halves together

6
http://www.cosc.canterbury.ac.nz/people/mukundan/dsal/MSort.html

7

Merging
Input: two sorted array A and B
Output: an output sorted array C
Three counters: Actr, Bctr, and Cctr

initially set to the beginning of their respective arrays

The smaller of A[Actr] and B[Bctr] is copied to the next
entry in C, and the appropriate counters are advanced
When either input list is exhausted, the remainder of the
other list is copied to C.

8

Merge: Example

9

Example: Merge (cont’d)

Merge Algorithm
/**

* Internal method that merges two sorted halves of a
subarray.

* @param a an array of Comparable items.
* @param tmpArray an array to place the merged

result.
* @param leftPos the left-most index of the subarray.
* @param rightPos the index of the start of the

second half.
* @param rightEnd the right-most index of the

subarray.
*/

private static <AnyType extends Comparable<? super
AnyType>>

void merge(AnyType [] a, AnyType [] tmpArray, int
leftPos, int rightPos, int rightEnd)

{
int leftEnd = rightPos - 1;
int tmpPos = leftPos;
int numElements = rightEnd - leftPos + 1;

// Main loop

while(leftPos <= leftEnd && rightPos <= rightEnd)
if(a[leftPos].compareTo(a[rightPos]) <= 0)

tmpArray[tmpPos++] = a[leftPos++];
else

tmpArray[tmpPos++] = a[rightPos++];

while(leftPos <= leftEnd) // Copy rest of first half
tmpArray[tmpPos++] = a[leftPos++];

while(rightPos <= rightEnd) // Copy rest of right
half

tmpArray[tmpPos++] = a[rightPos++];

// Copy tmpArray back
for(int i = 0; i < numElements; i++, rightEnd--)

a[rightEnd] = tmpArray[rightEnd];
}

10

11

Merge: Analysis

Running time analysis:
Merge takes O(m1 + m2), where m1 and m2
are the sizes of the two sub-arrays.

Space requirement:
merging two sorted lists requires linear extra
memory
additional work to copy to the temporary array
and back

12

Analysis of Merge Sort

Let T(N) denote the worst-case running time of
mergesort to sort N numbers.
Assume that N is a power of 2.

Divide step: O(1) time
Conquer step: 2 T(N/2) time
Combine step: O(N) time

Recurrence equation:
T(1) = 1
T(N) = 2T(N/2) + N

13

Solving the Recurrence

kNNT

NNT

NNNT

NNT

NNNT

NNTNT

k
k +=

=+=

++=

+=

++=

+=

)
2

(2

3)
8

(8

2)
4

)
8

(2(4

2)
4

(4

)
2

)
4

(2(2

)
2

(2)(

L

Since N=2k, we have k=log2 n

)log(
log

)
2

(2)(

NNO
NNN

kNNTNT k
k

=
+=

+=

