
11/17/2009 5:24 PM 1

Hashing

CSE 2011
Fall 2009

11/17/2009 5:24 PM 2

Hashing

� BST, AVL trees: O(logN) for insertion, deletions and
searches.

� Hashing is a technique used for performing insertion,
deletions and searches in constant average time.

� Finding min, finding max, printing the whole collection in
sorted order in linear time are not supported.

� A hash table data structure consists of:
�Hash function h
�Array of size N (bucket array)

11/17/2009 5:24 PM 3

Example
� We design a hash table

for a dictionary storing
items (SIN, Name),
where SIN (social
insurance number) is a
ten-digit positive
integer

� Our hash table uses an
array of size N = 10,000
and the hash function
h(x) = x mod N

� We use chaining to
handle collisions

� Assuming integer keys,
how do we map keys to
hash table entries?

∅

∅
∅

∅

∅

0
1
2
3
4

9997
9998
9999

…

451-229-0004 981-101-0004

200-751-9998

025-612-0001

11/17/2009 5:24 PM 4

Hash Functions and Hash Tables

� A hash function h maps
keys of a given type to
integers in a fixed interval
[0, N - 1]

� Example:
h(x) = x mod N

is a hash function for
integer keys

� The integer h(x) is called
the hash value of key x

� The goal of a hash function
is to uniformly disperse
keys in the range [0, N - 1]

� A hash table for a given key
type consists of
� Hash function h
� Array of size N

� A collision occurs when two
keys in the dictionary have the
same hash value.

� Collision handing schemes:
� Chaining: colliding items are

stored in a sequence
� Open addressing: the colliding

item is placed in a different cell
of the table

11/17/2009 5:24 PM 5

Design Issues

� Hash function
�For integer keys (compression functions)
�For strings

� Collision handling
�Separate chaining
�Probing (open addressing)

�Linear probing
�Quadratic probing
�Double hashing

� Table size (should be a prime number)

11/17/2009 5:24 PM 6

Compression Functions

� Division:
�h2 (y) = y modN
�The size N of the hash

table is usually chosen
to be a prime number to
minimize the number of
collisions

�The reason has to do
with number theory and
is beyond the scope of
this course

� Multiply, Add and
Divide (MAD):
�h2 (y) = (ay + b) modN
�a and b are

nonnegative integers
such that

a modN ≠ 0

�Otherwise, every
integer would map to
the same value b

11/17/2009 5:24 PM 7

Collision Handling

� Collisions occur when
different elements are
mapped to the same
cell

� Separate Chaining:
let each cell in the
table point to a linked
list of entries that map
there

� Separate chaining is
simple, but requires
additional memory
outside the table

∅

∅
∅

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

11/17/2009 5:24 PM 8

Separate Chaining

� Use chaining to set up lists of items with same index
� The expected search/insertion/removal time is O(n/N), provided that

the indices are uniformly distributed
� N = hash table size
� n = number of elements in the table

� If n = O(N), the expected running time is O(1)

11/17/2009 5:24 PM 9

Load Factor – Separate Chaining

� Define the load factor λ = n/N
� n = number of elements in the hash table
� N = hash table size (prime number)

� To obtain best performance with separate chaining,
ensure λ ≤ 1.

� As we add more elements to the hash table, λ goes up
⇒ rehashing (allocate a bigger table, define a new hash
function, and copy the elements to the new array).

11/17/2009 5:24 PM 10

Collision Handling

� Separate chaining
� Probing (open addressing)
� Linear probing
� Quadratic probing

� Double hashing

11/17/2009 5:24 PM 11

Linear Probing

� Linear probing handles
collisions by placing the
colliding item in the next
(circularly) available
table cell

� Each table cell
inspected is referred to
as a “probe”

� Colliding items lump
together; future
collisions will cause a
longer sequence of
probes

� Example:

� h(x) = x mod 13

� Insert keys 18, 41, 22,
44, 59, 32, 31, 73, in
this order

�Remove 44, 32, 73, 31

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73

0 1 2 3 4 5 6 7 8 9 10 11 12

11/17/2009 5:24 PM 12

Linear Probing Example

1841 2244 59 32

44 32

31

31

73

73

11/17/2009 5:24 PM 13

Search with Linear Probing

� Consider a hash table A that
uses linear probing

� get(k)
� We start at cell h(k)

� We probe consecutive
locations until one of the
following occurs
� An item with key k is

found, or

� An empty cell is found,
or

� N cells have been
unsuccessfully probed

Algorithm get(k)
i ← h(k)
p ← 0
repeat

c ← A[i]
if c == ∅

return NULL
else if c.key () = k

return c.element()
else

i ← (i + 1) modN
p ← p + 1

until p = N
return NULL

11/17/2009 5:24 PM 14

Removal and Insertion with Probing

� remove(k)
� Call get(k) to get the element.
� Should we set the now empty cell to NULL?

� No. It would mess up the search procedure. See example on the next slide.

� Return the element.

� A cell has three states:
� null: brand new, never used. get(x) stops when a null cell is

reached.

� in use: currently used.

� available: previously used, now available but unused. get(x)
continues the search when encountering an available cell.
� Example of available cells: key has value -1.

11/17/2009 5:24 PM 15

Example with remove(k)

1841 2244 59 32

44 32

31

31

73

73

remove(59)
get(31)

11/17/2009 5:24 PM 16

Linear Probing: Removal and Insertion

� To handle insertions and
deletions, we marked
the deleted cells as
“available” instead of
null.

� remove(k)
� We search for a cell with

key k
� If such an item is found,

we mark the cell as
“available” and we return
the element.

� Else, we return NULL

� put(k, e)
If table is not full, we
start at cell h(k). If this
cell is occupied:
� We probe consecutive

cells until a cell i is
found that is either null
or marked as “available”.

� We store item (k, e) in
cell i

11/17/2009 5:24 PM 17

Load Factor – Linear Probing

� Define the load factor λ = n/N
� n = number of elements in the hash table
� N = hash table size (prime number)

� To obtain best performance with linear probing, ensure
that λ ≤ 0.5.

� As we add more elements to the hash table, λ goes up
⇒ rehashing (allocate a bigger table, define a new hash
function, and copy the elements to the new array).

11/17/2009 5:24 PM 18

Next time …

� Probing (open addressing)
�Linear probing
�Quadratic probing
�Double hashing

� Rehashing
� Hash functions for strings

� For a brief comparison of hash tables and self-balancing
binary search trees (such as AVL trees), see
http://en.wikipedia.org/wiki/Associative_array#Efficient_representations

