

Trees

Linear access time of linked lists is prohibitive
Does there exist any simple data structure for which the running time of most operations (search, insert, delete) is $\mathrm{O}(\log \mathrm{N})$?

- Trees

Basic concepts
Tree traversal

- Binary trees

Binary search trees and operations

What is a Tree?

- In computer science, a tree is an abstract model of a hierarchical structure
- A tree consists of nodes with a parent-child relation
- Applications:

Recursive Definition

A tree is a collection of nodes.
The collection can be empty.

Otherwise, a tree consists of a distinguished node r (the root), and zero or more nonempty subtrees T_{1}, T_{2}, \ldots, T_{k}, each of whose roots is connected by a directed edge from r.

Figure 4.1 Generic tree

Terminologies

- Child and Parent

Figure 4.2 A tree
Every node except the root has one parent
A node can have zero or more children

- Leaves

Leaves are nodes with no children

- Sibling

Nodes with the same parent

- Ancestor and descendant

If there is a path from n 1 to n 2 then

- n 1 is an ancestor of n 2

- n 2 is a descendant of n 1
- Proper ancestor and proper descendant if $\mathrm{n} 1 \neq \mathrm{n} 2$

Terminologies

- Path

a sequence of edges

- Length of a path
number of edges on the path
- Depth of a node
length of the unique path from the root to that node

Figure 4.2 A tree

Terminologies (3)

- Height of a node
length of the longest path from that node to a leaf
all leaves are at height 0
- The height of a tree $=$ the height of the root
$=$ the depth of the deepest leaf

Figure 4.2 A tree

Example: UNIX Directory

Figure 4.5 unix directory

Example: Expression Trees

Figure 4.14 Expression tree for $(a+b * c)+((d * e+f) * g)$

Leaves are operands (constants or variables)

- The internal nodes contain operators

Tree ADT

- We use positions to abstract nodes (position \equiv node)
- Generic methods:
integer size()
boolean isEmpty()
Iterator elements()
Iterator positions()
- Accessor methods:
position root()
position parent(p)
positionlterator children(p)

- Query methods:
- boolean isInternal(p)
- boolean isExternal(p)
- boolean isRoot(p)
- Update method:
- object replace (p, e): replace with e and return element stored at node p
Additional update methods may be defined by data structures implementing the Tree ADT

Implementing Trees

Arrays?
Linked "lists" (pointers)?

Linked Structure for Trees

- A node is represented by an object storing

Element
Parent node

- Sequence of children nodes

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured

> | Algorithm preOrder(v) |
| :--- |
| visit(v) |
| for each child w of v |
| preOrder (w) | document

An Example

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and visit(v) its subdirectories

Applications

- Either preorder traversal or postorder traversal can be used when the order of computation is not important.
Example: printing the contents of a tree (in any order)
- Preorder traversal is required when we must perform a computation for each node before performing any computations for its descendents.
Example: Printing the headings of chapters, sections, sub-sections of a book.
Postorder traversal is needed when the computation for a node v requires the computations for v 's children to be done first.
Example: Given a file system, compute the disk space used by a directory.

Example: Computing Disk Space

Example: UNIX Directory Traversal

Figure 4.5 unix directory

```
Example: Unix Directory Traversal
```

Preorder
/usr
mark
ch1.r
ch2.r
ch3.r
course
cop3530
cop3530
fal198
fal198
syl.r
spr99
spr99
syl. sum99.
syl.
alex junk-
junk
bill work course cop3212 fal198 grades grades
prog1.r prog1.r prog2
fall 199 prog2.r prog1. r grades

Postorder

Binary Trees

A tree in which each node can have at most two children.

Generic binary tree

- The depth of an "average" binary tree is considerably smaller than N. In the worst case, the depth can be as large as $\mathrm{N}-1$.

Decision Tree

- Binary tree associated with a decision process
internal nodes: questions with yes/no answer external nodes: decisions
- Example: dining decision

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
internal nodes: operators
external nodes: operands
- Example: arithmetic expression tree for the expression $(2 \times(a-1)+(3 \times b))$

BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
Additional methods:

```
position left(p)
```

position right(p)
boolean hasLeft(p)
boolean hasRight(p)

Implementing Trees

Arrays?
Homework: How can trees be implemented using arrays? Analyze the storage requirements.
Linked structure?

Linked Structure of Binary Trees

class BinaryNode \{
Object element
BinaryNode
left;
BinaryNode
BinaryNode
right;
parent; \}

Figure 4.14 Expression tree for $(a+b * c)+((d * e+f) * g)$

Linked Structure of Binary Trees (2)

- A node is represented by an object storing

Element
Parent node
Left child node
Right child node

Array-Based Implementation

Nodes are stored in an array.

Binary Tree Traversal

- Preorder (node, left, right)

Postorder (left, right, node)
Inorder (left, node, right)

Figure 4.14 Expression tree for $(a+b * c)+((d * e+f) * g)$

Preorder Traversal: Example

- Preorder traversal
node, left, right
prefix expression

$$
++a^{*} b c^{*}+{ }^{*} d \operatorname{lefg}
$$

Figure 4.14 Expression tree for $(a+b * c)+((d * e+f) * g)$

Postorder Traversal: Example

- Postorder traversal left, right, node
postfix expression
$a b c{ }^{*}+d e^{*} f+g^{*}+$

Figure 4.14 Expression tree for $(a+b * c)+((d * e+f) * g)$

Inorder Traversal: Example

Inorder traversal
left, node, right

- infix expression
$a+b{ }^{*} c+d^{*} e+f^{*} g$

Figure 4.14 Expression tree for $(a+b * c)+((d * e+f) * g)$

Pseudo-code for Binary Tree Traversal

Algorithm Preorder (x)
Input: x is the root of a subtree.

1. if $x \neq$ NULL
2. then output $\operatorname{key}(x)$;
3. Preorder(left(x));
4. Preorder(right(x));
```
Algorithm Postorder(x)
Input: }x\mathrm{ is the root of a subtree.
if}x\not=\mathrm{ NULL
    then Postorder(left(x));
                Postorder(right(x));
        output key(x);
```

Algorithm Inorder (x)
Input: x is the root of a subtree.

1. if $x \neq$ NULL
2. then Inorder (left $(x))$;
3. output $\operatorname{key}(x)$;
4. Inorder $(\operatorname{right}(x))$;

Properties of Proper Binary Trees

A binary trees is proper if each node has either zero or two children.
Level: depth
The root is at level 0
Level d has at most 2^{d} nodes

- Notation:
n number of nodes
\boldsymbol{e} number of external (leaf) nodes
i number of internal nodes
\boldsymbol{h} height
$n=e+i$
$\boldsymbol{e}=\boldsymbol{i}+1$
$h+1 \leq \boldsymbol{e} \leq 2^{\boldsymbol{h}}$
$n=2 e-1$
h $\leq i \leq 2^{h}-1$
$2 h+1 \leq n \leq 2^{h+1}-1$
$\log _{2} \boldsymbol{e} \leq \boldsymbol{h} \leq \boldsymbol{e}-1$
$\log _{2}(\boldsymbol{i}+1) \leq \boldsymbol{h} \leq \boldsymbol{i}$
$\log _{2}(\boldsymbol{n}+1)-1 \leq \boldsymbol{h} \leq(\boldsymbol{n}-1) / 2$

Properties of (General) Binary Trees

- Level: depth

The root is at level 0 Level d has at most 2^{d} nodes
Notation:
n number of nodes
\boldsymbol{e} number of external (leaf) nodes
i number of internal nodes
\boldsymbol{h} height
$h+1 \leq n \leq 2^{h+1}-1$
$1 \leq \boldsymbol{e} \leq 2^{h}$
h $\quad \leq i \leq 2^{h}-1$
$\log _{2}(\boldsymbol{n}+1)-1 \leq \boldsymbol{h} \leq \boldsymbol{n}-1$

Next time ...

- Binary Search Trees

