
10/20/2009 12:57 PM 1

Trees

CSE 2011
Fall 2009

2

Trees

� Linear access time of linked lists is prohibitive
�Does there exist any simple data structure for which

the running time of most operations (search, insert,
delete) is O(log N)?

� Trees
�Basic concepts
�Tree traversal
�Binary trees
�Binary search trees and operations

3

What is a Tree?

� In computer science, a
tree is an abstract model
of a hierarchical
structure

� A tree consists of nodes
with a parent-child
relation

� Applications:
� Organization charts
� File systems

� Programming
environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

4

Recursive Definition

� A tree is a collection of nodes.
� The collection can be empty.
� Otherwise, a tree consists of a distinguished node r

(the root), and zero or more nonempty subtrees T1,
T2, . . . , Tk, each of whose roots is connected by a
directed edge from r.

5

Terminologies

� Child and Parent
� Every node except the root has one parent
� A node can have zero or more children

� Leaves
� Leaves are nodes with no children

� Sibling
� Nodes with the same parent

� Ancestor and descendant
� If there is a path from n1 to n2 then

�n1 is an ancestor of n2
�n2 is a descendant of n1

� Proper ancestor and proper descendant if n1 ≠ n2

6

Terminologies (2)

� Path
�a sequence of edges

� Length of a path
�number of edges on the path

� Depth of a node
�length of the unique path from the root to that node

7

Terminologies (3)

� Height of a node
�length of the longest path from that node to a leaf
�all leaves are at height 0

� The height of a tree = the height of the root
= the depth of the deepest leaf

8

Example: UNIX Directory

9

Example: Expression Trees

� Leaves are operands (constants or variables)
� The internal nodes contain operators

Trees 10

Tree ADT

� We use positions to abstract
nodes (position ≡ node)

� Generic methods:
� integer size()

� boolean isEmpty()
� Iterator elements()
� Iterator positions()

� Accessor methods:
� position root()

� position parent(p)
� positionIterator children(p)

Query methods:
� boolean isInternal(p)

� boolean isExternal(p)
� boolean isRoot(p)

Update method:
� object replace (p, e):

replace with e and return
element stored at node p

Additional update methods
may be defined by data
structures implementing the
Tree ADT

Implementing Trees

�Arrays ?
�Linked “lists” (pointers) ?

11

Trees 12

∅

Linked Structure for Trees

� A node is represented by
an object storing
� Element
� Parent node
� Sequence of children

nodes

B

DA

C E

F

B

∅ ∅

A D F

∅

C

∅

E

13

Preorder Traversal

� A traversal visits the nodes of a
tree in a systematic manner

� In a preorder traversal, a node is
visited before its descendants

� Application: print a structured
document

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

1

2

3

5

4
6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

preOrder(w)

14

An Example

15

Postorder Traversal

� In a postorder traversal, a
node is visited after its
descendants

� Application: compute space
used by files in a directory and
its subdirectories

Algorithm postOrder(v)
for each child w of v

postOrder(w)
visit(v)

cs16/

homeworks/
todo.txt

1K
programs/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

16

Applications

� Either preorder traversal or postorder traversal can be
used when the order of computation is not important.
Example: printing the contents of a tree (in any order)

� Preorder traversal is required when we must perform a
computation for each node before performing any
computations for its descendents.
Example: Printing the headings of chapters, sections,
sub-sections of a book.

� Postorder traversal is needed when the computation for
a node v requires the computations for v’s children to be
done first.
Example: Given a file system, compute the disk space
used by a directory.

17

Example: Computing Disk Space

18

Example: UNIX Directory Traversal

19

Example: Unix Directory Traversal
Preorder Postorder

20

Binary Trees

CSE 2011

21

Binary Trees

� A tree in which each node can have at most two
children.

� The depth of an “average” binary tree is considerably
smaller than N. In the worst case, the depth can be
as large as N – 1.

Generic
binary tree

Worst-case
binary tree

22

Decision Tree

� Binary tree associated with a decision process
� internal nodes: questions with yes/no answer
� external nodes: decisions

� Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No

23

Arithmetic Expression Tree

� Binary tree associated with an arithmetic expression
� internal nodes: operators
� external nodes: operands

� Example: arithmetic expression tree for the
expression (2 × (a − 1) + (3 × b))

+

××

−2

a 1

3 b

Trees 24

BinaryTree ADT

� The BinaryTree ADT
extends the Tree
ADT, i.e., it inherits
all the methods of
the Tree ADT

� Additional methods:
�position left(p)
�position right(p)
�boolean hasLeft(p)
�boolean hasRight(p)

� Update methods
may be defined by
data structures
implementing the
BinaryTree ADT

Implementing Trees

�Arrays?
�Homework: How can trees be implemented

using arrays? Analyze the storage
requirements.

�Linked structure?

25

26

Linked Structure of Binary Trees

class BinaryNode {
Object element
BinaryNode left;
BinaryNode right;
BinaryNode parent;

}

27

Linked Structure of Binary Trees (2)

� A node is represented
by an object storing
� Element

� Parent node
� Left child node
� Right child node

B

DA

C E

∅∅∅∅ ∅∅∅∅

∅∅∅∅ ∅∅∅∅ ∅∅∅∅ ∅∅∅∅

B

A D

C E

∅∅∅∅

Trees 28

Array-Based Implementation

� Nodes are stored in an array.

…

� Let rank(node) be defined as follows:

� rank(root) = 1

� if node is the left child of parent(node),
rank(node) = 2 *rank(parent(node))

� if node is the right child of parent(node),
rank(node) = 2 *rank(parent(node))+1

1

2 3

6 74 5

10 11

A

HG

FE

D

C

B

J

29

Binary Tree Traversal

� Preorder (node, left, right)
� Postorder (left, right, node)
� Inorder (left, node, right)

30

Preorder Traversal: Example

� Preorder traversal
� node, left, right
� prefix expression

� + + a * b c * + * d e f g

31

Postorder Traversal: Example

� Postorder traversal
� left, right, node
� postfix expression

� a b c * + d e * f + g * +

32

Inorder Traversal: Example

� Inorder traversal
� left, node, right
� infix expression

� a + b * c + d * e + f * g

33

Pseudo-code for Binary Tree Traversal

34

Properties of Proper Binary Trees

� A binary trees is proper if
each node has either zero
or two children.

� Level: depth
The root is at level 0
Level d has at most 2d nodes

� Notation:
n number of nodes
e number of external

(leaf) nodes
i number of internal

nodes
h height

n ==== e + i
e ==== i ++++ 1
h+1 ≤≤≤≤ e ≤≤≤≤ 2h

n ==== 2e −−−− 1
h ≤≤≤≤ i ≤≤≤≤ 2h – 1
2h+1 ≤≤≤≤ n ≤≤≤≤ 2h+1 – 1

log2 e ≤≤≤≤ h ≤≤≤≤ e –1
log2 (i ++++ 1) ≤≤≤≤ h ≤≤≤≤ i
log2 (n ++++ 1) −−−− 1 ≤≤≤≤ h ≤≤≤≤ (n −−−− 1)////2

35

Properties of (General) Binary Trees

� Level: depth
The root is at level 0
Level d has at most 2d

nodes
� Notation:

n number of nodes
e number of external

(leaf) nodes
i number of internal

nodes
h height

h+1 ≤≤≤≤ n ≤≤≤≤ 2h+1 – 1

1 ≤≤≤≤ e ≤≤≤≤ 2h

h ≤≤≤≤ i ≤≤≤≤ 2h – 1

log2 (n ++++ 1) −−−− 1 ≤≤≤≤ h ≤≤≤≤ n −−−− 1

36

Next time …

� Binary Search Trees

