9/28/2009 7:57 AM

Stacks

CSE 2011
Fall 2009

Abstract Data Types (ADTs)

An abstract data
type (ADT) is an
abstraction of a
data structure

An ADT
specifies:
Data stored

Operations on the
data

Error conditions
associated with
operations

Example: ADT modeling a
simple stock trading system

The data stored are buy/sell
orders

The operations supported are
order buy(stock, shares, price)
order sell(stock, shares, price)
void cancel(order)

Error conditions:
Buy/sell a nonexistent stock
Cancel a nonexistent order

Stacks 2

Stacks: LIFO

Insertions and deletions follow the Last-In First-Out rule

Applications, examples:
— Undo operation in a text editor
— History of visited web pages
— Sequence of method calls in Java

Method Stack in the JVM

The Java Virtual Machine main() {

(JVM) keeps track of the chain inti=5:

of active methods with a stack foo(i):

When a method is called, the !

JVM pushes on the stack a

frame containing foo(int J) {
Local variables and return value Int K;
Program counter, keeping track of K =]+1;
the statement being executed bar(k);

When a method ends, its frame 1

Is popped from the stack and |
control is passed to the method bar(int m) {
on top of the stack

Allows for recursion]

Stacks

Stack ADT

Data stored: arbitrary objects

Operations:
— push(object): inserts an element

— object pop(): removes and returns the last
Inserted element

Other useful operations:

— object top(): returns the last inserted element
without removing it

Error Conditions

push(object)
object pop()
object top()

Exceptions are thrown when an operation cannot be
executed.

Execution of pop() or top() on an empty stack
— throws EmptyStackException.

Another useful operation:
— boolean iIsEmpty(): returns true if the stack is empty;

false otherwise.

Stack Operations

push(object)

object pop()

object top()
boolean IsEmpty/()

Still another useful operation:
Int size(): returns the number of elements in the stack

Any others?
Depending on implementation

Stack Interface in Java

Java interface public interface Stack {

corresponding to public int size();
our Stack ADT

Requires the
definition of class

public boolean IsEmpty();

public Object top()
throws EmptyStackException;

EmptyStackException

Different from the public void push(Object 0);
bullt-in Java class oublic Object pop()

Java.util. Stack throws EmptyStackException;

Stacks

Array-based Implementation

An array S of maximum size N
A variable t that keeps track of the top element in array S

Top element: SJt]

Stack is empty: ?
Number of elements in the stack: ?

0 1 2 {

Pseudo-code

Algorithm size(): Algorithm pop():
return (t + 1); if (ISEmpty())
throw StackEmptyException;
Algorithm IsEmpty(): temp = S[t];
return (t < 0); t=t—1;
return temp;
Algorithm top():
if (ISEmpty()) Optimization: set S[t] to null
throw StackEmptyException; before decrementing t
return SJt]; Homework: implement pop()

without any temp variable

10

Method push()

Algorithm push(object): Algorithm push(object):
t=t+1; iIf (size() == N)
S[t] = object; throw FullStackException;
t=t+1;

S[t] = object;
The array may become full

push() method will then
throw a FullStackException

Limitation of array-based
implementation

11

Array-based Stack in Java

public class ArrayStack

| public Object pop()
Implements Stack {

throws EmptyStackException {
if ISEmpty()

(“Empty stack: cannot pop”);
Object temp = S|top];

private int top = -1;

S[top] = null;
public ArrayStack(int capacity) { top =top - 1;
S = new Object[capacity]); return temp;

! }

private Object S J; throw new EmptyStackException

Stacks

12

Performance of Array Implementation

Each operation runs in O(1) time
(no loops, no recursion)

Array-based implementation is simple, efficient,
but ...

The maximum size N of the stack is fixed
How to determine N? Not easy!

Alternatives?

Extendable arrays
Linked lists (singly or doubly linked?"??)

13

Implementing a Stack with a Singly
Linked List

Each node has two parts:

1. pointer to the object (data stored)

2. pointer to the next node In the list

First node = head

Last node = tail (next pointer is set to null)

__

14

pop() and push() Methods

__

head tail
T T e
! r——r I'
| = - “ - — - "

__

* inserting at the head s just as easy

Analysis of Linked List Implementation

Space usage: O(n)

N = number of elements in the stack

Each operation runs in O(1) time

No limit on the stack size, subject to available memory
(run-time error OutOfMemoryError)

Homework and Questions

Implement the Stack ADT using singly linked lists

List-based and array-based operations all run in O(1)
time. List-based implementation imposes no limit on the
stack size, while array-based implementation does. Is
list-based implementation better?

Can we perform push() and pop() at the tail of the linked
list? Analyze the running time in this case.

17

Next time ...

Queues (5.2)

18

