
1

Queues

CSE 2011
Fall 2009

9/28/2009 7:56 AM

2

Queues: FIFO

Insertions and removals follow the Fist-In First-Out rule:
– Insertions: at the rear of the queue
– Removals: at the front of the queue

Applications, examples:
– Waiting lists
– Access to shared resources (e.g., printer)
– Multiprogramming (UNIX)

3

Queue ADT

Data stored: arbitrary objects
Operations:
– enqueue(object): inserts an element at the end of the

queue
– object dequeue(): removes and returns the element at

the front of the queue
– object front(): returns the element at the front

without removing it
Execution of dequeue() or front() on an empty queue
→ throws EmptyQueueException
Another useful operation:
– boolean isEmpty(): returns true if the queue is empty;

false otherwise.

4

Queue Operations

enqueue(object)
object dequeue()
object front()
boolean isEmpty()
int size(): returns the
number of elements in
the queue

Any others? Depending
on implementation and/or
applications

public interface Queue {
public int size();
public boolean isEmpty();
public Object front()
throws

EmptyQueueException;
public Object dequeue()
throws

EmptyQueueException;
public void enqueue (Object

obj);
}

Queues 5

Queue Example
Operation Output Q
enqueue(5) – (5)
enqueue(3) – (5, 3)
dequeue() 5 (3)
enqueue(7) – (3, 7)
dequeue() 3 (7)
front() 7 (7)
dequeue() 7 ()
dequeue() “error” ()
isEmpty() true ()
enqueue(9) – (9)
enqueue(7) – (9, 7)
size() 2 (9, 7)
enqueue(3) – (9, 7, 3)
enqueue(5) – (9, 7, 3, 5)
dequeue() 9 (7, 3, 5)

6

Array-based Implementation

An array Q of maximum size N
Need to keep track the front and rear of the queue:
f: index of the front object
r: index immediately past the rear element
Note: Q[r] is empty (does not store any object)

7

Array-based Implementation

Front element: Q[f]
Rear element: Q[r – 1]
Queue is empty: f = r
Queue size: r – f

8

Dequeue() and Enqueue()

Algorithm dequeue():
if (isEmpty())
throw QueueEmptyException;
temp = Q[f];
f = f + 1;
return temp;

Algorithm enqueue(object):
if (r == N)

throw QueueFullException;
Q[r] = object;
r = r + 1;

9

Circular Array Implementation

Analogy:
A snake chases its tail

Front element: Q[f]
Rear element: Q[r – 1]

Incrementing f, r
f = (f + 1) mod N
r = (r + 1) mod N
mod: Java operator “%”

10

Circular Array Implementation

Queue size =
(N – f + r) mod N
→ verify this
Queue is empty: f = r
When r reaches and
overlaps with f, the queue
is full: r = f

To distinguish between
empty and full states, we
impose a constraint: Q
can hold at most N – 1
objects (one cell is
wasted). So r never
overlaps with f, except
when the queue is empty.

11

Pseudo-code

Algorithm enqueue(object):
if (size() == N – 1)

throw QueueFullException;
Q[r] = object;
r = (r + 1) mod N;

Algorithm dequeue():
if (isEmpty())
throw QueueEmptyException;
temp = Q[f];
f = (f + 1) mod N;
return temp;

12

Pseudo-code

Algorithm front():
if (isEmpty())
throw QueueEmptyException;
return Q[f];

Algorithm isEmpty():
return (f = r);

Algorithm size():
return ((N – f + r) mod N);

Homework: Remove the
constraint “Q can hold at
most N – 1 objects”. That
is, Q can store up to N
objects. Implement the
Queue ADT using a
circular array.

Note: there is no
corresponding built-in
Java class for queue ADT

13

Analysis of Circular Array Implementation

Performance
Each operation runs in O(1) time

Limitation
The maximum size N of the queue is fixed
How to determine N?
Alternatives?

Extendable arrays
Linked lists (singly or doubly linked???)

14

Singly or Doubly Linked?

Singly linked list

private static class Node<AnyType>
{

public AnyType data;
public Node<AnyType> next;

}

Needs less space.
Simpler code in some cases.
Insertion at tail takes O(n).

Doubly linked list

private static class DNode<AnyType>
{

public AnyType data;
public Node<AnyType> prev;
public Node<AnyType> next;

}

Better running time in many
cases (discussed before).

15

Implementing a Queue with a Singly
Linked List

Head of the list = front of the queue (enqueue)
Tail of the list = rear of the queue (dequeue)
Is this efficient?

16

dequeue(): Removing at the Head

Running time = ?

17

enqueue(): Inserting at the Tail

Running time = ?

18

Method enqueue() in Java

public void enqueue(Object obj) {
Node node = new Node();
node.setElement(obj);
node.setNext(null); // node will be new tail node
if (size == 0)

head = node; // special case of a previously empty queue
else

tail.setNext(node); // add node at the tail of the list
tail = node; // update the reference to the tail node
size++;

}

19

Method dequeue() in Java

public Object dequeue() throws QueueEmptyException {
Object obj;
if (size == 0)

throw new QueueEmptyException("Queue is empty.");
obj = head.getElement();
head = head.getNext();
size––;
if (size == 0)

tail = null; // the queue is now empty
return obj;

}

20

Analysis of Implementation with Singly-
Linked Lists

Each methods runs in O(1) time
Note: Removing at the tail of a singly-linked list requires
θ(n) time

Comparison with array-based implementation:
No upper bound on the size of the queue (subject to
memory availability)
More space used per element (next pointer)
Implementation is more complicated (pointer
manipulations)
Method calls consume time (setNext, getNext, etc.)

21

Next time …

Double-ended Queues (Deques) (5.3)

