

Graphs

- A graph is a pair $(\boldsymbol{V}, \boldsymbol{E})$, where \boldsymbol{V} is a set of nodes, called vertices
\boldsymbol{E} is a collection of pairs of vertices, called edges
Vertices and edges are objects and store elements
- Example:

A vertex represents an airport and stores the three-letter airport code
An edge represents a flight route between two airports and stores the mileage of the route

Edge Types

- Directed edge
ordered pair of vertices (u,v) first vertex u is the origin second vertex v is the destination e.g., a flight

- Undirected edge
unordered pair of vertices (u,v) e.g., a flight route
- Directed graph (digraph) all the edges are directed
 e.g., flight network
- Undirected graph all the edges are undirected e.g., route network
- Mixed graph:
contains both directed and undirected edges

Applications

Electronic circuits

Printed circuit board
Integrated circuit

- Transportation networks

Highway network
Flight network

- Computer networks

Local area network
Internet
Web

- Databases

Entity-relationship diagram

Terminology

End vertices (or endpoints) of an edge

U and V are the endpoints of a

- Edges incident on a vertex
a, d, and b are incident on V
Adjacent vertices
U and V are adjacent
Degree of a vertex
W has degree 4
Loop
j is a loop
 (we will consider only loopless graphs)

Terminology (2)

For directed graphs:

- Origin, destination of an edge
- Outgoing edge
- Incoming edge
- Out-degree of vertex v:
 number of outgoing edges of v
- In-degree of vertex v: number of incoming edges of v

Paths

- Path
sequence of alternating vertices and edges
begins with a vertex
ends with a vertex
each edge is preceded and followed by its endpoints
- Path length
the total number of edges on the path
- Simple path
path such that all vertices are distinct (except that the first and last could be the same)
- Examples
$P_{1}=(V, b, X, h, Z)$ is a simple path
$P_{2}=(U, c, W, e, X, g, Y, f, W, d, V)$ is a path that is not simple

Properties of Undirected Graphs

Property 1
$\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{E}$
Proof: each edge is counted twice
Property 2
In an undirected graph with no loops
$\mathbf{E} \leq \mathbf{V}(\mathbf{V}-1) / 2$
Proof: each vertex has degree at most $(\mathbf{V}-1)$

What is the bound for a directed graph?

Cycles

- Cycle
circular sequence of alternating vertices and edges
each edge is preceded and followed by its endpoints
- Simple cycle
cycle such that all its vertices are distinct (except the first and the last)
Examples
$\mathrm{C}_{1}=(\mathrm{V}, \mathrm{b}, \mathrm{X}, \mathrm{g}, \mathrm{Y}, \mathrm{f}, \mathrm{W}, \mathrm{c}, \mathrm{U}, \mathrm{a}, \mathrm{V})$ is a simple cycle
$\mathrm{C}_{2}=(\mathrm{U}, \mathrm{c}, \mathrm{W}, \mathrm{e}, \mathrm{X}, \mathrm{g}, \mathrm{Y}, \mathrm{f}, \mathrm{W}, \mathrm{d}, \mathrm{V}, \mathrm{a}, \mathrm{U})$ is a cycle that is not simple
A directed graph is acyclic if
 it has no cycles \Rightarrow called
DAG (directed acyclic graph)

Connectivity - Undirected Graphs

connected

not connected

An undirected graph is connected if there is a path from every vertex to every other vertex.

Connectivity - Directed Graphs

- A directed graph is called strongly connected if there is a path from every vertex to every other vertex.
- If a directed graph is not strongly connected, but the corresponding undirected graph is connected, then the directed graph is said to be weakly connected.

Graph ADT and Data Structures

Representation of Graphs

- Two popular computer representations of a graph:

Both represent the vertex set and the edge set, but in different ways.

1. Adjacency Matrices

Use a 2D matrix to represent the graph
2. Adjacency Lists

Use a set of linked lists, one list per vertex

Adjacency Matrix Representation

- 2D array of size $\boldsymbol{n} \times \boldsymbol{n}$ where \boldsymbol{n} is the number of vertices in the graph
$A[i][j]=1$ if there is an edge connecting vertices i and j; otherwise, $A[i][j]=0$

	a b c d e				
a	0	0	1	1	1
b	0	0	0	0	0
c	1	0	0	0	1
d	1	0	0	0	1
e	1	0	1	1	0

Adjacency Matrix Example

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{0}$	0	0	0	0	0	0	0	0	1	0
$\mathbf{1}$	0	0	1	1	0	0	0	1	0	1
$\mathbf{2}$	0	1	0	0	1	0	0	0	1	0
$\mathbf{3}$	0	1	0	0	1	1	0	0	0	0
$\mathbf{4}$	0	0	1	1	0	0	0	0	0	0
$\mathbf{5}$	0	0	0	1	0	0	1	0	0	0
$\mathbf{6}$	0	0	0	0	0	1	0	1	0	0
$\mathbf{7}$	0	1	0	0	0	0	1	0	0	0
$\mathbf{8}$	1	0	1	0	0	0	0	0	0	1
$\mathbf{9}$	0	1	0	0	0	0	0	0	1	0

Adjacency Matrices: Analysis

- The storage requirement is $\Theta\left(V^{2}\right)$. not efficient if the graph has few edges.
appropriate if the graph is dense; that is $\mathrm{E}=\Theta\left(V^{2}\right)$
If the graph is undirected, the matrix is
symmetric. There exist methods to store a symmetric matrix using only half of the space.

Note: the space requirement is still $\Theta\left(V^{2}\right)$.
We can detect in $O(1)$ time whether two vertices are connected.

Adjacency Lists

- If the graph is sparse, a better solution is an adjacency list representation.
- For each vertex \boldsymbol{v} in the graph, we keep a list of vertices adjacent to \boldsymbol{v}.

Adjacency List Example

0	8			
1	2	3	7	\%
2	1	4	8	
3	1	4	5	
4	2	3		
5	3	6		
6	5	7		
7	1	6		
8	0	2	9	
9	1	8		

Adjacency Lists: Analysis

```
Space =
    \Theta (V + + \Sigmav deg(v))=\Theta(V + E)
\(\Theta\left(V+\Sigma_{\mathrm{v}} \operatorname{deg}(\mathrm{v})\right)=\Theta(\mathrm{V}+\mathrm{E})\)
```


Testing whether u is adjacency to v takes time $\mathrm{O}(\operatorname{deg}(\mathrm{v})$) or O(deg(u)).

Adjacency Lists vs. Adjacency Matrices

An adjacency list takes $\Theta(\mathrm{V}+\mathrm{E})$.
If $\mathrm{E}=\mathrm{O}\left(V^{2}\right)$ (dense graph), both use $\Theta\left(V^{2}\right)$ space.
If $\mathrm{E}=\mathrm{O}(V)$ (sparse graph), adjacency lists are more space efficient.

Adjacency lists

More compact than adjacency matrices if graph has few edges
Requires more time to find if an edge exists
Adjacency matrices
Always require $\Theta\left(V^{2}\right)$ space

- This can waste lots of space if the number of edges is small Can quickly find if an edge exists

(Undirected) Graph ADT

- Vertices and edges
are positions store elements
- Define Vertex and Edge interfaces, each extending Position interface
- Accessor methods
endVertices(e): an array of the two endvertices of e opposite(v, e): the vertex opposite of v on e
areAdjacent(v, w): true iff v and w are adjacent
replace (v, x) : replace element at vertex v with x
replace (e, x) : replace element at edge e with x
- Update methods
insertVertex(o): insert a vertex storing element o insertEdge(v, w, o): insert an edge (v, w) storing element o
removeVertex(v): remove vertex v (and its incident edges)
removeEdge(e): remove edge e
Iterator methods
incidentEdges(v): edges incident to v
vertices(): all vertices in the graph
edges(): all edges in the graph

Homework

- Prove the big-Oh running time of the graph methods shown in the next slide.

Running Time of Graph Methods

\boldsymbol{n} vertices, \boldsymbol{m} edges \cdot \cdot no parallel edges no self-loops \cdot bounds are "big-Oh"	Edge List	Adjacency List	Adjacency Matrix
Space	$n+m$	$\boldsymbol{n}+\boldsymbol{m}$	\boldsymbol{n}^{2}
incidentEdges (\boldsymbol{v})	m	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}
areAdjacent $(\boldsymbol{v}, \boldsymbol{w})$	m	$\min (\operatorname{deg}(\boldsymbol{v}), \operatorname{deg}(\boldsymbol{w}))$	1
insertVertex (\boldsymbol{o})	1	1	\boldsymbol{n}^{2}
insertEdge $(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{o})$	1	1	1
removeVertex (\boldsymbol{v})	m	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}^{2}
removeEdge (\boldsymbol{e})	1	1	1

Next Lectures

Lab test 2 - November 26, 17:30-19:00

Graph traversal

Breadth first search (BFS) - Dec. 1

> Applications of BFS

Depth first search (DFS) - Dec. 3
Review - Dec. 8
Final exam - Dec. 11

