

- Directed edge
 - \bigcirc ordered pair of vertices (u,v)
 - \bigcirc first vertex u is the origin
 - \bigcirc second vertex v is the destination
 - o e.g., a flight
- Undirected edge
 - \bigcirc unordered pair of vertices (u,v)
 - o e.g., a flight route
- Directed graph (digraph)
 - all the edges are directed
 - o e.g., flight network
- Undirected graph
 - all the edges are undirected
 - e.g., route network
- Mixed graph:

contains both directed and undirected edges

3

Applications

- Electronic circuits
 - O Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - O Web
- Databases
 - Entity-relationship diagram

Terminology

- O U and V are the endpoints of
- Edges incident on a vertex
 - o a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - OW has degree 4
- Loop
 - j is a loop (we will consider only loopless graphs)

.

Terminology (2)

For directed graphs:

- Origin, destination of an edge
- Outgoing edge
- Incoming edge
- Out-degree of vertex v: number of outgoing edges of v
- In-degree of vertex v: number of incoming edges of v

Paths

- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Path length
 - the total number of edges on the path
- Simple path
 - path such that all vertices are distinct (except that the first and last could be the same)
- Examples
 - \bigcirc P₁=(V,b,X,h,Z) is a simple path
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

7

Properties of Undirected Graphs

Property 1

 $\sum_{v} \deg(v) = 2E$

Proof: each edge is

counted twice

Property 2

In an undirected graph with no loops

 $\mathbf{E} \leq \mathbf{V} (\mathbf{V} - 1)/2$

Proof: each vertex has degree at most (V – 1)

What is the bound for a directed graph?

Notation

V number of vertices

E number of edges

deg(v) degree of vertex v

Example

 $\bigcirc V = 4$

 $\bigcirc E = 6$

 $\bigcirc \deg(\mathbf{v}) = 3$

Cycles

- Cycle
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices are distinct (except the first and the last)
- Examples
 - C₁=(V,b,X,g,Y,f,W,c,U,a,V) is a simple cycle
 - C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,U) is a cycle that is not simple
- A directed graph is acyclic if it has no cycles ⇒ called DAG (directed acyclic graph)

9

Connectivity – Undirected Graphs

connected

not connected

 An undirected graph is connected if there is a path from every vertex to every other vertex.

Connectivity – Directed Graphs

- A directed graph is called strongly connected if there is a path from every vertex to every other vertex.
- If a directed graph is not strongly connected, but the corresponding undirected graph is connected, then the directed graph is said to be weakly connected.

11

Graph ADT and Data Structures

CSE 2011

Representation of Graphs

- Adjacency Matrices
 Use a 2D matrix to represent the graph
- Adjacency Lists
 Use a set of linked lists, one list per vertex

13

Adjacency Matrix Representation

- 2D array of size n x n where n is the number of vertices in the graph
- A[i][j]=1 if there is an edge connecting vertices i and j; otherwise, A[i][j]=0

	a	b	c	d	e
a	0	0	1	1	1
b	0	0	0	0	0
c	1	0	0	0	1
d	1	0	0	0	1
e	1	0	1	1	0

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	1	0	0	0	1	0	1
2	0	1	0	0	1	0	0	0	1	0
3	0	1	0	0	1	1	0	0	0	0
4	0	0	1	1	0	0	0	0	0	0
5	0	0	0	1	0	0	1	0	0	0
6	0	0	0	0	0	1	0	1	0	0
7	0	1	0	0	0	0	1	0	0	0
8	1	0	1	0	0	0	0	0	0	1
9	0	1	0	0	0	0	0	0	1	0

15

Adjacency Matrices: Analysis

- The storage requirement is $\Theta(V^2)$.
 - Onot efficient if the graph has few edges.
 - Oappropriate if the graph is dense; that is $E = \Theta(V^2)$
- If the graph is undirected, the matrix is symmetric. There exist methods to store a symmetric matrix using only half of the space.
 - Note: the space requirement is still $\Theta(V^2)$.
- We can detect in O(1) time whether two vertices are connected.

Adjacency Lists

- If the graph is sparse, a better solution is an adjacency list representation.
- For each vertex v in the graph, we keep a list of vertices adjacent to v.

17

Adjacency List Example

Adjacency Lists: Analysis

Space =
$$\Theta(V + \Sigma_v \deg(v)) = \Theta(V + E)$$

 Testing whether u is adjacency to v takes time O(deg(v)) or O(deg(u)).

19

Adjacency Lists vs. Adjacency Matrices

- An adjacency list takes Θ(V + E).
 - If E = O(V^2) (dense graph), both use $\Theta(V^2)$ space.
 - \bigcirc If E = O(V) (sparse graph), adjacency lists are more space efficient.
- Adjacency lists
 - More compact than adjacency matrices if graph has few edges
 - O Requires more time to find if an edge exists
- Adjacency matrices
 - \bigcirc Always require $\Theta(V^2)$ space
 - This can waste lots of space if the number of edges is small
 - Ocan quickly find if an edge exists

(Undirected) Graph ADT

- Vertices and edges
 - o are positions
 - store elements
- Define Vertex and Edge interfaces, each extending Position interface
- Accessor methods
 - endVertices(e): an array of the two endvertices of e
 - opposite(v, e): the vertex opposite of v on e
 - areAdjacent(v, w): true iff v and w are adjacent
 - oreplace(v, x): replace element at vertex v with x
 - replace(e, x): replace element at edge e with x

- Update methods
 - insertVertex(o): insert a vertex storing element o
 - o insertEdge(v, w, o): insert an edge (v,w) storing element o
 - removeVertex(v): remove vertex v (and its incident edges)
 - oremoveEdge(e): remove edge e
- Iterator methods
 - incidentEdges(v): edges incident to v
 - vertices(): all vertices in the graph
 - edges(): all edges in the graph

21

Homework

Running Time of Graph Methods

 n vertices, m edges no parallel edges no self-loops bounds are "big-Oh" 	Edge List	Adjacency List	Adjacency Matrix
Space	n + m	n+m	n^2
incidentEdges(v)	m	$\deg(v)$	n
areAdjacent (v, w)	m	$\min(\deg(v), \deg(w))$	1
insertVertex(o)	1	1	n^2
insertEdge(v, w, o)	1	1	1
removeVertex(v)	m	$\deg(v)$	n^2
removeEdge(e)	1	1	1

23

Next Lectures

- Lab test 2 November 26, 17:30-19:00
- Graph traversal
 - ○Breadth first search (BFS) Dec. 1
 - Applications of BFS
 - Openth first search (DFS) Dec. 3
- Review Dec. 8
- Final exam Dec. 11