Depth-First Search

CSE 2011 Fall 2009

12/1/2009 11:43 AM

1

Depth-First Search (DFS)

- DFS is another popular graph search strategy
 - Idea is similar to pre-order traversal (visit node, then visit children recursively)
- DFS will continue to visit neighbors in a recursive pattern
 - Whenever we visit v from u, we recursively visit all unvisited neighbors of v. Then we backtrack (return) to u.

Time Complexity of DFS

- We never visited a vertex more than once.
- We had to examine the adjacency lists of all vertices.
 - \(\sum_{\text{vartey}}\) \(\text{degree}(\varter) = 2\text{E}\)
- So, the running time of DFS is proportional to the number of edges and number of vertices (same as BFS)
 - O(V + E)

Enhanced DFS Algorithm

- What if a graph is not connected (strongly connected)?
 - Use an enhanced version of DFS, which is similar to the enhanced BFS algorithm

```
BFSearch( G ) {
  i = 1;  // component number
  for every vertex v
    flag[v] = false;
  for every vertex v
    if ( flag[v] == false ) {
      print ( "Component " + i++ );
      BFS( v);
   }
}
```

25

Applications of DFS

- Is there a path from source s to a vertex v?
- Is an undirected graph connected?
- Is a directed graph strongly connected?
- To output the contents (e.g., the vertices) of a graph
- To find the connected components of a graph
- To find out if a graph contains cycles and report cycles.
- To construct a DSF tree/forest from a graph

Applications – DFS vs BFS

- What can BFS do and DFS can't?
 - Finding shortest paths (in unweighted graphs)
- What can DFS do and BFS can't?
 - Finding out if a connected undirected graph is biconnected
 - A connected undirected graph is biconnected if there are no vertices whose removal disconnects the rest of the graph

Next time ... Review — Dec. 8 Final exam — Dec. 11