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Depth-First Search (DFS)

DFS is another popular graph search strategy

= Idea is similar to pre-order traversal (visit node, then
visit children recursively)

DFS will continue to visit ina
recursive pattern

= Whenever we visit v from u, we recursively visit all
unvisited neighbors of v. Then we backtrack (return)
to u.




DFS Algorithm

Algorithm DFS(s)
1. for each vertex v ,
2. dol| flag[v] := false] Flag all vertices as not

3. RDFS(s); visited

Algorithm RDFS(v)
[Aag[v] := true;| Flag yourself as visited
2. |for each neighbor w of v
3. do if flag[w] = false
4 then RDFS(w);

For unvisited neighbors,
call RDFS(w) recursively

Example

Adjacency List Visited Table (T/F)

| o
ra

_ e |

o || = |

o

(SN PR S [PVl (TSR S Y

|¢ S T R O|

|

wm |
L=

-
-
-
-
-
-
-
&)
red

Initialize visited
table (all False)

Initialize Pred to -1




Adjacency List

source
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RDFS(2)
Now visit RDFS(8)

Adjacency List

source

¥
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RDFS(2)
RDFS(8)
2 is already visited, so visit RDFS(0)

Visited Table (T/F)

Mark 2 as visited

Visited Table (T/F)

Mark 8 as visited

mark Pred[8]




Adjacency List

source

¥
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RDFS(2)
RDFS(8)
RDFS(0) -> no unvisited neighbors, return
to call RDFS(8)

Back to 8 Adjacency List

source

¥
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RDFS(2)
RDFS(8)
Now visit 9 -> RDFS(9)

Visited Table (T/F)

Mark 0 as visited

Mark Pred[0]

Visited Table (T/F)




Adjacency List
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RDFS(2)
RDFS(8)
RDFS(9)
-> visit 1, RDFS(1)

Adjacency List

source
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RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1)
visit RDFS(3)

Visited Table (T/F)

Mark 9 as visited

Mark Pred[9]

Visited Table (T/F)

Mark 1 as visited

Mark Pred[1]




Adjacency List Visited Table (T/F)
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Mark 3 as visited

RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1)
RDFS(3)
visit RDFS(4)

Mark Pred[3]

Adjacency List Visited Table (T/F)
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RDFS(2) Mark 4 as visited
RDFS(8)

RDFS(9) Mark Pred[4]
RDFS(1)
RDFS(3)
RDFS(4) > STOP all of 4’s neighbors have been visited
return back to call RDFS(3) 12




Adjacency List Visited Table (T/F)
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Back to 3

RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1)
RDFS(3)
visit 5 -> RDFS(5)

Adjacency List Visited Table (T/F)

source

T - PRl
a9,

%

Woooe a1 T th B W b o= D

RDFS(2)
RDFS(8) Mark 5 as visited
RD';Sé?S(l) Mark Pred[5]
RDFS(3)
RDFS(5)
3 is already visited, so visit 6 -> RDFS(6)




Adjacency List Visited Table (T/F)

=1

source

Ll I )

@u:@»—- -

o »—@w m;@@m

fsit
WS (S

L= = S v B ]

RDFS(2)

RDFS(8
ngF)s(g) Mark 6 as visited

RDFS(1) Mark Pred[6]
RDFS(3)
RDFS(5)
RDFS(6)
visit 7 -> RDFS(7)

Adjacency List Visited Table (T/F)
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RDFS(2) Pred

RDFS(8
R[()F)s(g) Mark 7 as visited

RDFS(1) Mark Pred[7]
RDFS(3)
RDFS(5)
RDFS(6)
RDFS(7) -> Stop no more unvisited neighbdi&




Adjacency List
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RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1)
RDFS(3)
RDFS(5)
RDFS(6) -> Stop

Adjacency List
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RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1)
RDFS(3)
RDFS(5) -> Stop

Visited Table (T/F)

Visited Table (T/F)




Adjacency List
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RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1)
RDFS(3) -> Stop

Adjacency List
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RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1) -> Stop

Visited Table (T/F)

Visited Table (T/F)
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Adjacency List
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RDFS(2)
RDFS(8)
RDFS(9) -> Stop

Adjacency List
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RDFS(2)
RDFS(8) -> Stop

Recursive

calls

Visited Table (T/F)

Visited Table (T/F)
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Example Finished

Adjacency List Visited Table (T/F)

source

Woooe -1 3 B b = D

RDFS( 2 ) -> Stop

Time Complexity of DFS

We never visited a vertex more than once.

We had to examine the adjacency lists of all vertices.

So, the running time of DFS is proportional to the
number of edges and number of vertices (same as BFS)

= O(V+E)
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Enhanced DFS Algorithm

What if a graph is not BFSearch( G) {
connected (strongly i=1; [/ component number
connected)? for every vertex v

= Use an enhanced version of flaglv] = false;
DFS, which is similar to the ~ for every vertex v
enhanced BFS algorithm if ( flaglv] == false ) {
print ( "Component ” + A+ );

Applications of DFS

Is there a path from source sto a vertex v?

Is an undirected graph connected?

Is a directed graph strongly connected?

To output the contents (e.g., the vertices) of a graph
To find the connected components of a graph

To find out if a graph contains cycles and report cycles.
To construct a DSF tree/forest from a graph
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DFS Path Tracking

source

Adjacency List Visited Table (T/F)

Woome -1 3 B b = D

Algorithm Path(w)

1.

2
3.
4

if pred[w] # -1 Try some examples.
then Path(0) ->

) Path(6) ->
Path(pred[w]); Path(7) ->
output w

DFS Tree

Resulting DFS-tree.
Notice it is much “deeper”
than the BFS tree.

Captures the structure of the
recursive calls

- when we visit a neighbor w of v,
we add w as child of v

- whenever DFS returns from a
vertex v, we climb up in the tree
from v to its parent
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Applications — DFS vs BFS

What can BFS do and DFS can't?
= Finding shortest paths (in unweighted graphs)

What can DFS do and BFS can’t?

= Finding out if a connected undirected graph is
biconnected

A connected undirected graph is biconnected if
there are no vertices whose removal disconnects
the rest of the graph

DFS vs. BFS

Applications
Spanning forest, connected
components paths, cycles

Shortest paths

Biconnected components
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Next time ...

Review — Dec. 8
Final exam — Dec. 11
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