Applications of BFS and DFS

Some Applications of BFS and DFS

- BFS

To find the shortest path from a vertex s to a vertex v in an unweighted graph
To find the length of such a path
To construct a BSF tree/forest from a graph
To find out if a strongly connected directed graph contains cycles
DFS
To find a path from a vertex s to a vertex v.
To find the length of such a path.
To construct a DSF tree/forest from a graph.

Finding Shortest Paths Using BFS

Finding Shortest Paths

- The BFS code we have seen
find outs if there exists a path from a vertex s to a vertex v prints the vertices of a graph (connected/strongly connected).
What if we want to find
the shortest path from s to a vertex v (or to every other vertex)?
the length of the shortest path from s to a vertex v ?
In addition to array flag[], use an array named prev[], one element per vertex.
$\operatorname{prev}[w]=v$ means that vertex w was visited right after v

BFS and Finding Shortest Path

Algorithm BFS(s)

1. for each vertex v
2. do $\operatorname{flag}(v):=$ false;
3. $\operatorname{pred}[v]:=-1$;

4. $Q=$ empty queue;
5. flag $[s]:=$ true;
6. enqueue (Q, s);
7. while Q is not empty
8. do $v:=\operatorname{dequeue}(Q)$; already got shortest path from s to v
9. for each w adjacent to v
10.
11.
12.
13. do if $\operatorname{flag}[w]=$ false
then $\operatorname{flag}[w]:=$ true;

$$
\operatorname{pred}[w]:=v ; \quad \text { record where you }
$$

Shortest Path Algorithm

```
for each w adjacent to v
    if flag[w] = false {
        flag[w] = true;
        prev[w] = v; // visited w right after v
        enqueue(w);
    }
```

To print the shortest path from s to a vertex u, start with prev[u] and backtrack until reaching the source s.

Running time of backtracking = ?

- To find the length of the shortest path from s to u, start with $\operatorname{prev}[u]$, backtrack and increment a counter until reaching s.

Running time $=$?

Flag that 2 has been visited.

$$
\mathrm{Q}=\{2\}
$$

Place source 2 on the queue.

Example of Path Reporting

Try some examples; report path from s to v:
Path(2-0) \Rightarrow
Path(2-6) \Rightarrow
Path(2-1) \Rightarrow

Path Reporting

- Given a vertex w, report the shortest path from s to w currentV = w;
while (prev[current $\backslash] \neq-1$) \{
output currentV; // or add to a list
currentV = prev[currentV];
\}
output s; // or add to a list

The above code prints the path in reverse order.

Path Reporting (2)

To output the path in the right order,
Print the list in reverse order.
Use a stack instead of a list.
Use a recursive method (implicit use of a stack).
printPath (w) \{
if $(p r e v[w] \neq-1)$ printPath (prev[w]);
output w;
\}

Finding Shortest Path Length

- To find the length of the shortest path from s to u, start with prev[u], backtrack and increment a counter until reaching the source s.

Running time of backtracking $=$?

- Following is a faster way to find the length of the shortest path from s to u (at the cost of using more space)
Allocate an array $d[$], one element per vertex.
When BSF algorithm ends, $d[u]$ records the length of the shortest path from s to u.
Running time of finding path length $=$?

Recording the Shortest Distance

Algorithm BFS(s)

1. for each vertex v
2. do $\operatorname{flag}(v):=$ false;
3. $\quad \operatorname{pred}[v]:=-1 ; \mathrm{d}[\mathrm{v}]=\infty$;
4. $\quad Q=$ empty queue;
5. $f l a g[s]:=$ true; $\mathrm{d}[\mathrm{s}]=0$;
6. enqueue (Q, s);
7. while Q is not empty
8. do $v:=$ dequeue (Q) $\mathrm{d}[\mathrm{v}]$ stores shortest
9. for each w adjacent to v
10. do if $\operatorname{flag}[w]=$ false
11. then $\operatorname{flag}[w]:=$ true;
$\operatorname{pred}[w]:=v ; \quad \mathrm{d}[\mathrm{w}]=\mathrm{d}[\mathrm{v}]+1 ;$
enqueue (Q, w)

Computing Spanning Trees

Trees

- Tree: a connected graph without cycles.
- Given a connected graph, remove the cycles \Rightarrow a tree.
- The paths found by BFS(s) form a rooted tree (called a spanning tree), with the starting vertex as the root of the tree.

Computing a BFS Tree

Use BFS on a vertex BFS (v) with array prev[]

The paths from source s to the other vertices form a tree

Computing Spanning Forests

Computing a BFS Forest

- A forest is a set of trees.
- A connected graph gives a tree (which is itself a forest).
- A connected component also gives us a tree.
- A graph with k components gives a forest of k trees.

Example

Example of a Forest

We removed the cycles

Computing a BFS Forest

Use BFS method on a graph BFSearch(G), which calls BFS(v)

Use BFS(v) with array prev[].
The paths originating from v form a tree.

- BFSearch(G) examines all the components to compute all the trees in the forest.

Testing for Cycles

- Method isCyclic(v) returns true if a directed graph (with only one component) contains a cycle, and returns false otherwise.

1. for each vertex v
2. do flag $[v]:=$ false;
3. $\quad Q=$ empty queue;
4. flag $[s]:=$ true;
5. enqueue (Q, s);
6. while Q is not empty
7. do $v:=\operatorname{dequeue}(Q)$;
8. for each w adjacent to v
9. do if $\operatorname{flag}[w]=$ false
10.
11.

then $\operatorname{flag}[w]:=$ true;
enqueue (Q, w)
else return true;
return false;

Finding Cycles

- To output the cycle just detected, use info in prev[].

NOTE: The code above applies only to directed graphs.
Homework: Explain why that code does not work for undirected graphs.

Finding Cycles in Undirected Graphs

To detect/find cycles in an undirected graph, we need to classify the edges into 3 categories during program execution:
unvisited edge: never visited.
discovery edge: visited for the very first time.
cross edge: edge that forms a cycle.
Code fragment 13.10, p. 605.

- When the BFS algorithm terminates, the discovery edges form a spanning tree.
- If there exists a cross edge, the undirected graph contains a cycle.

BFS Algorithm (in textbook)

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)
Input graph \boldsymbol{G}
Output labeling of the edges and partition of the vertices of G
for all $u \in$ G.vertices()
setLabel(u, UNEXPLORED)
for all $e \in$ G.edges()
setLabel(e, UNEXPLORED)
for all $\boldsymbol{v} \in$ G.vertices()
if $\operatorname{getLabel}(v)=$ UNEXPLORED BFS(G, v)
Breadth-First Search
Breadin-First Search

```
Algorithm BFS(G, s)
    \(L_{0} \leftarrow\) new empty sequence
    \(L_{0}\).insertLast(s)
    setLabel(s, VISITED)
    \(i \leftarrow 0\)
    while \(\neg L_{i}\) isEmpty()
        \(\boldsymbol{L}_{i+1} \leftarrow\) new empty sequence
        for all \(v \in L_{i}\). elements()
            for all \(e \in\) G.incidentEdges(v)
                if \(\operatorname{getLabel}(e)=\) UNEXPLORED
                    \(w \leftarrow\) opposite( \(v, e)\)
                    if \(\operatorname{getLabel}(w)=\) UNEXPLORED
                        setLabel(e, DISCOVERY)
                        setLabel(w, VISITED)
                    \(L_{i+1}\).insertLast(w)
                    else
                            setLabel(e, CROSS)
        \(i \leftarrow i+1\)
```


Example

- - \rightarrow cross edge

39

```
Breadth-First Search
```

Example (2)

40 Breadth-First Search

Example (3)

DFS Applications

Applications of DFS

Is there a path from source s to a vertex v ?

- Is an undirected graph connected?
- Is a directed graph strongly connected?
- To output the contents (e.g., the vertices) of a graph

To find the connected components of a graph
To find out if a graph contains cycles and report cycles.

- To construct a DSF tree/forest from a graph

DFS Algorithm

Algorithm DFS(s)

1. for each vertex v
2. do flag $[v]:=$ false;
3. $\operatorname{RDFS}(s)$;

Algorithm RDFS(v)

1. flaq $[v]:=$ true;
2. for each neighbor w of v
3. do if $\operatorname{flag}[w]=$ false
4. then RDFS (w);

Flag all vertices as not visited

Flag yourself as visited

For unvisited neighbors, call RDFS(w) recursively

We can also record the paths using prev[].
Where do we insert the code for prev[]?

DFS Path Tracking

DFS find out path too
Algorithm Path (w)

1. if $\operatorname{pred}[w] \neq-1$
2. then
3. Path (pred $[w]$);
4. output w

Try some examples.
Path(0) ->
Path(6) ->
Path(7) ->

DFS Tree

Resulting DFS-tree.
Notice it is much "deeper" than the BFS tree.

Captures the structure of the recursive calls

- when we visit a neighbor w of v, we add w as child of v
- whenever DFS returns from a vertex v, we climb up in the tree from v to its parent

Finding Cycles Using DFS

Similar to using BFS.

For undirected graphs, classify the edges into 3 categories during program execution: unvisited edge, discovery edge, and back (cross) edge.

Code Fragment 13.1, p. 595.
If there exists a back edge, the undirected graph contains a cycle.

Applications - DFS vs. BFS

What can BFS do and DFS can't?

Finding shortest paths (in unweighted graphs)
What can DFS do and BFS can't?
Finding out if a connected undirected graph is biconnected

A connected undirected graph is biconnected if there are no vertices whose removal disconnects the rest of the graph

DFS vs. BFS

Final Exam

Review: December 8.

Final Exam: December 11, 7PM - 10PM

Material:

All lectures notes and corresponding sections in the textbook.
Assignments 1 and 2.
Homework and review questions.

