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Applications of BFS and DFS

CSE 2011

Fall 2009

112/7/2009 1:10 PM

Some Applications of BFS and DFS

 BFS
 To find the shortest path from a vertex s to a vertex v in an p

unweighted graph
 To find the length of such a path
 To construct a BSF tree/forest from a graph
 To find out if a strongly connected directed graph contains cycles

 DFS
 To find a path from a vertex s to a vertex v.
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 To find a path from a vertex s to a vertex v.
 To find the length of such a path.
 To construct a DSF tree/forest from a graph.
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Finding Shortest PathsFinding Shortest Paths 
Using BFS
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Finding Shortest Paths

 The BFS code we have seen 
 find outs if there exists a path from a vertex s to a vertex v find outs if there exists a path from a vertex s to a vertex v 

 prints the vertices of a graph (connected/strongly connected).

 What if we want to find 
 the shortest path from s to a vertex v (or to every other 

vertex)?

 the length of the shortest path from s to a vertex v?

 In addition to array flag[ ] use an array named prev[ ]
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 In addition to array flag[ ], use an array named prev[ ], 
one element per vertex.
 prev[w] = v means that vertex w was visited right after v
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Example
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prev[ ] now can be traced backward
to report the path!

prev[ ]

BFS and Finding Shortest Path

initialize 
all pred[v] to -1

already got shortest path from s to v

6

record where  you 
came from
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Shortest Path Algorithm
for each w adjacent to v

if flag[w] = false {
flag[w] = true;flag[w]  true;
prev[w] = v;   // visited w right after v
enqueue(w);

}

 To print the shortest path from s to a vertex u, start with 
prev[u] and backtrack until reaching the source s.
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Running time of backtracking = ?
 To find the length of the shortest path from s to u, start 

with prev[u], backtrack and increment a counter until 
reaching s.
Running time = ?
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Q = {    }

Initialize visited
table (all false)

Initialize prev[ ] to -1

Initialize Q to be empty

prev[ ]
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Q = {  2   }

Flag that 2 has 
been visited.

Place source 2 on the queue.

prev
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Q = {2} →  {  8, 1, 4 }

Mark neighbors
as visited.

Record in prev
that we came from 
2.

Dequeue 2.  
Place all unvisited neighbors of 2 on the queue

prev
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Q = {  8, 1, 4 } → { 1, 4, 0, 9 } 
Mark new visited
Neighbors.

Record in prev
that we came 
from 8.

Dequeue 8.  
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

prev
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Q = {  1, 4, 0, 9 } → { 4, 0, 9, 3, 7 } 

Mark new visited
Neighbors.

Record in prev
that we came 
from 1.

Dequeue 1.  
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.

prev
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Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 } 

Dequeue 4.  
-- 4 has no unvisited neighbors!

prev
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Q = { 0, 9, 3, 7 } → { 9, 3, 7 } 

Dequeue 0.  
-- 0 has no unvisited neighbors!

prev
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Q = { 9, 3, 7 } → { 3, 7 } 

Dequeue 9.  
-- 9 has no unvisited neighbors!
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Q = { 3, 7 } → { 7, 5 } 

Dequeue 3.  
-- place neighbor 5 on the queue.

Mark new visited
Vertex 5.

Record in prev
that we came 
from 3.

prev
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Q = { 7, 5 } → { 5, 6 } 

Dequeue 7.  
-- place neighbor 6 on the queue.

Mark new visited
Vertex 6.

Record in prev
that we came 
from 7.
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Q = { 5, 6} → { 6 } 

Dequeue 5.  
-- no unvisited neighbors of 5.

prev



10

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

8

2

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

T

T

T

T

T

Neighbors

1

2

3

7

1

2

8

prev

19

Q = { 6 } → {  } 

Dequeue 6.  
-- no unvisited neighbors of 6.

prev

BFS Finished
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Q = {  } STOP!!!   Q is empty!!!

prev[ ] now can be traced backward
to report the path!

prev[ ]
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Example of Path Reporting
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Try some examples; report path from s to v:
Path(2-0) 
Path(2-6) 
Path(2-1) 

Path Reporting

 Given a vertex w, report the shortest path from s to w

currentV = w;currentV = w;

while (prev[currentV]  –1) {

output currentV;  // or add to a list

currentV = prev[currentV];

}

output s; // or add to a list

22

output s; // or add to a list

 The above code prints the path in reverse order.
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Path Reporting (2)

 To output the path in the right order,
 Print the list in reverse order Print the list in reverse order.

 Use a stack instead of a list.

 Use a recursive method (implicit use of a stack).

printPath (w) {

if (prev[w]  –1) 

23

printPath (prev[w]);

output w;

}

Finding Shortest Path Length

 To find the length of the shortest path from s to u, start 
with prev[u], backtrack and increment a counter untilwith prev[u], backtrack and increment a counter until 
reaching the source s.
Running time of backtracking = ?

 Following is a faster way to find the length of the shortest 
path from s to u (at the cost of using more space)
Allocate an array d[ ] one element per vertex

24

Allocate an array d[ ], one element per vertex.

When BSF algorithm ends, d[u] records the length of the 
shortest path from s to u.

Running time of finding path length = ?
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Recording the Shortest Distance

d[v] = ;

d[s] = 0;

d[v] stores shortest 
distance from s to

25

d[w] = d[v] + 1;

distance from s to v

Computing Spanning Trees

26
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Trees
 Tree: a connected graph without cycles.

 Given a connected graph, remove the cycles  a tree.

 The paths found by BFS(s) form a rooted tree (called a spanning The paths found by BFS(s) form a rooted tree (called a spanning 
tree), with the starting vertex as the root of the tree.

BFS tree for vertex s = 2

27What would a level-order traversal of the tree tell you?

Computing a BFS Tree

 Use BFS on a vertex 
BFS( v ) with arrayBFS( v ) with array 
prev[ ]

 The paths from 
source s to the other 
vertices form a tree

28

vertices form a tree
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Computing Spanning Forests

29

Computing a BFS Forest

 A forest is a set of trees.

 A t d h i t ( hi h i it lf A connected graph gives a tree (which is itself a 
forest).

 A connected component also gives us a tree.

 A graph with k components gives a forest of k
trees.

30
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Example
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Computing a BFS Forest

 Use BFS method on a graph BFSearch( G ), 
which calls BFS( v )which calls BFS( v ) 

 Use BFS( v ) with array prev[ ].
The paths originating from v form a tree.

33

 BFSearch( G ) examines all the components to 
compute all the trees in the forest.

Testing for Cycles

34
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Testing for Cycles

 Method isCyclic(v) returns true if a directed graph (with only one 
component) contains a cycle, and returns false otherwise.

35
else return true;

return false;

Finding Cycles

 To output the cycle just detected, use info in prev[ ].

 NOTE: The code above applies only to directed graphs.

 Homework: Explain why that code does not work for 
undirected graphs.

36
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Finding Cycles in Undirected Graphs

 To detect/find cycles in an undirected graph, we need to 
classify the edges into 3 categories during program y g g g p g
execution: 
 unvisited edge: never visited.  
 discovery edge: visited for the very first time.
 cross edge: edge that forms a cycle.

 Code fragment 13.10, p. 605.
 When the BFS algorithm terminates, the discovery 

edges form a spanning treeedges form a spanning tree.
 If there exists a cross edge, the undirected graph 

contains a cycle.

37

BFS Algorithm (in textbook)
 The algorithm uses a 

mechanism for setting and 
getting “labels” of vertices

Algorithm BFS(G, s)
L0  new empty sequence
L0.insertLast(s)getting labels  of vertices 

and edges
L0.insertLast(s)
setLabel(s, VISITED)
i  0
while Li.isEmpty()

Li 1  new empty sequence
for all v  Li.elements() 

for all e  G.incidentEdges(v)
if getLabel(e) UNEXPLORED

w  opposite(v,e)
if getLabel(w) UNEXPLORED

Algorithm BFS(G)
Input graph G
Output labeling of the edges 

and partition of the 
vertices  of G 

for all u  G.vertices()
tL b l( UNEXPLORED)

Breadth-First Search38

if  getLabel(w) UNEXPLORED
setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li 1.insertLast(w)

else
setLabel(e, CROSS)

i  i 1

setLabel(u, UNEXPLORED)
for all e  G.edges()
setLabel(e, UNEXPLORED)

for all v  G.vertices()
if getLabel(v) UNEXPLORED

BFS(G, v)
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Example
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Example (3)
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DFS Applications

42
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Applications of DFS

 Is there a path from source s to a vertex v?

 Is an undirected graph connected?

 Is a directed graph strongly connected?

 To output the contents (e.g., the vertices) of a graph

 To find the connected components of a graph

 To find out if a graph contains cycles and report cycles.

 To construct a DSF tree/forest from a graph

43

DFS Algorithm

Flag all vertices as not
visited

Flag yourself as visited

44

For unvisited neighbors,
call RDFS(w) recursively

We can also record the paths using prev[ ].

Where do we insert the code for prev[ ]?
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DFS Path Tracking
Adjacency List
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Pred

Try some examples.
Path(0) ->
Path(6) ->
Path(7) ->

DFS find out path too

DFS Tree
Resulting DFS-tree.
Notice it is much “deeper”
than the BFS tree.

Captures the structure of the 
recursive calls

- when we visit a neighbor w of v, 
we add w as child of v

- whenever DFS returns from a 
vertex v we climb up in the tree

46

vertex v, we climb up in the tree 
from v to its parent
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Finding Cycles Using DFS

 Similar to using BFS.

 For undirected graphs, classify the edges into 3 
categories during program execution: unvisited 
edge, discovery edge, and back (cross) edge.
Code Fragment 13.1, p. 595.
 If there exists a back edge the undirected graph contains a If there exists a back edge, the undirected graph contains a 

cycle.

47

Applications – DFS vs. BFS

What can BFS do and DFS can’t?
Finding shortest paths (in unweighted graphs)

What can DFS do and BFS can’t?
Finding out if a connected undirected graph is 

biconnected
A connected undirected graph is biconnected if there 

48

are no vertices whose removal disconnects  the rest 
of the graph
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DFS vs. BFS

ApplicationsApplications DFSDFS BFSBFS
Spanning forest connectedSpanning forest connected

A
L0

A

Spanning forest, connected Spanning forest, connected 
components, paths, cyclescomponents, paths, cycles

 

Shortest pathsShortest paths 

Biconnected componentsBiconnected components 

49
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Final Exam

Review: December 8.

Final Exam: December 11, 7PM - 10PM

Material:
All lectures notes and corresponding sections in 

the textbook.

Assignments 1 and 2

50

Assignments 1 and 2.

Homework and review questions.


