
1

Applications of BFS and DFS

CSE 2011

Fall 2009

112/7/2009 1:10 PM

Some Applications of BFS and DFS

 BFS
 To find the shortest path from a vertex s to a vertex v in an p

unweighted graph
 To find the length of such a path
 To construct a BSF tree/forest from a graph
 To find out if a strongly connected directed graph contains cycles

 DFS
 To find a path from a vertex s to a vertex v.

2

 To find a path from a vertex s to a vertex v.
 To find the length of such a path.
 To construct a DSF tree/forest from a graph.

2

Finding Shortest PathsFinding Shortest Paths
Using BFS

3

Finding Shortest Paths

 The BFS code we have seen
 find outs if there exists a path from a vertex s to a vertex v find outs if there exists a path from a vertex s to a vertex v

 prints the vertices of a graph (connected/strongly connected).

 What if we want to find
 the shortest path from s to a vertex v (or to every other

vertex)?

 the length of the shortest path from s to a vertex v?

 In addition to array flag[] use an array named prev[]

4

 In addition to array flag[], use an array named prev[],
one element per vertex.
 prev[w] = v means that vertex w was visited right after v

3

Example

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

8

2

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

T

T

T

T

T

1

2

3

7

1

2

8

prev[]

5

prev[] now can be traced backward
to report the path!

prev[]

BFS and Finding Shortest Path

initialize
all pred[v] to -1

already got shortest path from s to v

6

record where you
came from

4

Shortest Path Algorithm
for each w adjacent to v

if flag[w] = false {
flag[w] = true;flag[w] true;
prev[w] = v; // visited w right after v
enqueue(w);

}

 To print the shortest path from s to a vertex u, start with
prev[u] and backtrack until reaching the source s.

7

Running time of backtracking = ?
 To find the length of the shortest path from s to u, start

with prev[u], backtrack and increment a counter until
reaching s.
Running time = ?

Example

0

Adjacency List

0

1

2

Visited Table
(T/F)

F

F

F

-

-

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

F

F

F

F

F

F

F

-

-

-

-

-

-

-

8

Q = { }

Initialize visited
table (all false)

Initialize prev[] to -1

Initialize Q to be empty

prev[]

5

0

Adjacency List

0

1

2

Visited Table (T/F)

F

F

T

-

-

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

F

F

F

F

F

F

F

-

-

-

-

-

-

-

prev

9

Q = { 2 }

Flag that 2 has
been visited.

Place source 2 on the queue.

prev

0

Adjacency List

0

1

2

Visited Table (T/F)

F

T

T
Neighbors

-

2

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

F

T

F

F

F

T

F

Neighbors
-

2

-

-

-

2

-

prev

10

Q = {2} → { 8, 1, 4 }

Mark neighbors
as visited.

Record in prev
that we came from
2.

Dequeue 2.
Place all unvisited neighbors of 2 on the queue

prev

6

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

8

2

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

F

T

F

F

F

T

T

Neighbors

-

2

-

-

-

2

8

prev

11

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }
Mark new visited
Neighbors.

Record in prev
that we came
from 8.

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

prev

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

Neighbors

8

2

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

F

F

T

T

T

1

2

-

-

1

2

8

prev

12

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark new visited
Neighbors.

Record in prev
that we came
from 1.

Dequeue 1.
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.

prev

7

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

8

2

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

F

F

T

T

T

Neighbors

1

2

-

-

1

2

8

prev

13

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.
-- 4 has no unvisited neighbors!

prev

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

Neighbors
8

2

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

F

F

T

T

T

1

2

-

-

1

2

8

prev

14

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.
-- 0 has no unvisited neighbors!

prev

8

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

8

2

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

F

F

T

T

TNeighbors

1

2

-

-

1

2

8

prev

15

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.
-- 9 has no unvisited neighbors!

prev

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

8

2

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

T

F

T

T

T

Neighbors 1

2

3

-

1

2

8

16

Q = { 3, 7 } → { 7, 5 }

Dequeue 3.
-- place neighbor 5 on the queue.

Mark new visited
Vertex 5.

Record in prev
that we came
from 3.

prev

9

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

8

2

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

T

T

T

T

T

Neighbors

1

2

3

7

1

2

8

prev

17

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.
-- place neighbor 6 on the queue.

Mark new visited
Vertex 6.

Record in prev
that we came
from 7.

prev

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

8

2

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

T

T

T

T

T

Neighbors

1

2

3

7

1

2

8

prev

18

Q = { 5, 6} → { 6 }

Dequeue 5.
-- no unvisited neighbors of 5.

prev

10

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

8

2

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

T

T

T

T

T

Neighbors

1

2

3

7

1

2

8

prev

19

Q = { 6 } → { }

Dequeue 6.
-- no unvisited neighbors of 6.

prev

BFS Finished

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

8

2

-

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

T

T

T

T

T

1

2

3

7

1

2

8

prev[]

20

Q = { } STOP!!! Q is empty!!!

prev[] now can be traced backward
to report the path!

prev[]

11

Example of Path Reporting

8

2

0

1

2

nodes visited from

-

1

2

3

7

1

2

8

2

3

4

5

6

7

8

9

21

Try some examples; report path from s to v:
Path(2-0) 
Path(2-6) 
Path(2-1) 

Path Reporting

 Given a vertex w, report the shortest path from s to w

currentV = w;currentV = w;

while (prev[currentV]  –1) {

output currentV; // or add to a list

currentV = prev[currentV];

}

output s; // or add to a list

22

output s; // or add to a list

 The above code prints the path in reverse order.

12

Path Reporting (2)

 To output the path in the right order,
 Print the list in reverse order Print the list in reverse order.

 Use a stack instead of a list.

 Use a recursive method (implicit use of a stack).

printPath (w) {

if (prev[w]  –1)

23

printPath (prev[w]);

output w;

}

Finding Shortest Path Length

 To find the length of the shortest path from s to u, start
with prev[u], backtrack and increment a counter untilwith prev[u], backtrack and increment a counter until
reaching the source s.
Running time of backtracking = ?

 Following is a faster way to find the length of the shortest
path from s to u (at the cost of using more space)
Allocate an array d[] one element per vertex

24

Allocate an array d[], one element per vertex.

When BSF algorithm ends, d[u] records the length of the
shortest path from s to u.

Running time of finding path length = ?

13

Recording the Shortest Distance

d[v] = ;

d[s] = 0;

d[v] stores shortest
distance from s to

25

d[w] = d[v] + 1;

distance from s to v

Computing Spanning Trees

26

14

Trees
 Tree: a connected graph without cycles.

 Given a connected graph, remove the cycles  a tree.

 The paths found by BFS(s) form a rooted tree (called a spanning The paths found by BFS(s) form a rooted tree (called a spanning
tree), with the starting vertex as the root of the tree.

BFS tree for vertex s = 2

27What would a level-order traversal of the tree tell you?

Computing a BFS Tree

 Use BFS on a vertex
BFS(v) with arrayBFS(v) with array
prev[]

 The paths from
source s to the other
vertices form a tree

28

vertices form a tree

15

Computing Spanning Forests

29

Computing a BFS Forest

 A forest is a set of trees.

 A t d h i t (hi h i it lf A connected graph gives a tree (which is itself a
forest).

 A connected component also gives us a tree.

 A graph with k components gives a forest of k
trees.

30

16

Example

P

A graph with 3 components

D
E

A
C

L
N

M

O
R

Q
P

s

31

A

F
B

G
K

H

Example of a Forest

P

We removed the cycles
from the previous graph.

D
E

A
C

L
N

M

O
R

Q
P

s

A forest with 3 trees

32

A

F
B

G
K

H

17

Computing a BFS Forest

 Use BFS method on a graph BFSearch(G),
which calls BFS(v)which calls BFS(v)

 Use BFS(v) with array prev[].
The paths originating from v form a tree.

33

 BFSearch(G) examines all the components to
compute all the trees in the forest.

Testing for Cycles

34

18

Testing for Cycles

 Method isCyclic(v) returns true if a directed graph (with only one
component) contains a cycle, and returns false otherwise.

35
else return true;

return false;

Finding Cycles

 To output the cycle just detected, use info in prev[].

 NOTE: The code above applies only to directed graphs.

 Homework: Explain why that code does not work for
undirected graphs.

36

19

Finding Cycles in Undirected Graphs

 To detect/find cycles in an undirected graph, we need to
classify the edges into 3 categories during program y g g g p g
execution:
 unvisited edge: never visited.
 discovery edge: visited for the very first time.
 cross edge: edge that forms a cycle.

 Code fragment 13.10, p. 605.
 When the BFS algorithm terminates, the discovery

edges form a spanning treeedges form a spanning tree.
 If there exists a cross edge, the undirected graph

contains a cycle.

37

BFS Algorithm (in textbook)
 The algorithm uses a

mechanism for setting and
getting “labels” of vertices

Algorithm BFS(G, s)
L0  new empty sequence
L0.insertLast(s)getting labels of vertices

and edges
L0.insertLast(s)
setLabel(s, VISITED)
i  0
while Li.isEmpty()

Li 1  new empty sequence
for all v  Li.elements()

for all e  G.incidentEdges(v)
if getLabel(e) UNEXPLORED

w  opposite(v,e)
if getLabel(w) UNEXPLORED

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u  G.vertices()
tL b l(UNEXPLORED)

Breadth-First Search38

if getLabel(w) UNEXPLORED
setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li 1.insertLast(w)

else
setLabel(e, CROSS)

i  i 1

setLabel(u, UNEXPLORED)
for all e  G.edges()
setLabel(e, UNEXPLORED)

for all v  G.vertices()
if getLabel(v) UNEXPLORED

BFS(G, v)

20

Example

A visited vertex

A unexplored vertex A
L0

L1

A

discovery edge

cross edge

A visited vertex

unexplored edge

L0

CB

E

D
L1

F

A
L0

Breadth-First Search39

CB

E

D
L1

F

CB

E

D
L1

F

Example (2)

A
L0

A
L0

CB

E

D
L1

F

A
L0

CB

E

D
L1

F
L2

A
L0

Breadth-First Search40

CB

A

E

D
L1

F
L2

CB

A

E

D
L1

F
L2

21

Example (3)

A
L0

A
L0

CB

E

D
L1

F
L2

A
L0

CB

E

D
L1

F
L2

Breadth-First Search41

CB

A

E

D
L1

F
L2

DFS Applications

42

22

Applications of DFS

 Is there a path from source s to a vertex v?

 Is an undirected graph connected?

 Is a directed graph strongly connected?

 To output the contents (e.g., the vertices) of a graph

 To find the connected components of a graph

 To find out if a graph contains cycles and report cycles.

 To construct a DSF tree/forest from a graph

43

DFS Algorithm

Flag all vertices as not
visited

Flag yourself as visited

44

For unvisited neighbors,
call RDFS(w) recursively

We can also record the paths using prev[].

Where do we insert the code for prev[]?

23

DFS Path Tracking
Adjacency List

00

11

22

Visited Table (T/F)

TT

TT

TT

88

99

--2 9

8

0

source

33

44

55

66

77

88

99

TT

TT

TT

TT

TT

TT

TT

11

33

33

55

66

22

88

PredDFS find out path too

4

3

5

1

7
6

9

45

Pred

Try some examples.
Path(0) ->
Path(6) ->
Path(7) ->

DFS find out path too

DFS Tree
Resulting DFS-tree.
Notice it is much “deeper”
than the BFS tree.

Captures the structure of the
recursive calls

- when we visit a neighbor w of v,
we add w as child of v

- whenever DFS returns from a
vertex v we climb up in the tree

46

vertex v, we climb up in the tree
from v to its parent

24

Finding Cycles Using DFS

 Similar to using BFS.

 For undirected graphs, classify the edges into 3
categories during program execution: unvisited
edge, discovery edge, and back (cross) edge.
Code Fragment 13.1, p. 595.
 If there exists a back edge the undirected graph contains a If there exists a back edge, the undirected graph contains a

cycle.

47

Applications – DFS vs. BFS

What can BFS do and DFS can’t?
Finding shortest paths (in unweighted graphs)

What can DFS do and BFS can’t?
Finding out if a connected undirected graph is

biconnected
A connected undirected graph is biconnected if there

48

are no vertices whose removal disconnects the rest
of the graph

25

DFS vs. BFS

ApplicationsApplications DFSDFS BFSBFS
Spanning forest connectedSpanning forest connected

A
L0

A

Spanning forest, connected Spanning forest, connected
components, paths, cyclescomponents, paths, cycles

 

Shortest pathsShortest paths 

Biconnected componentsBiconnected components 

49

CB

E

D
L1

F
L2

CB

E

D

F

DFS BFS

Final Exam

Review: December 8.

Final Exam: December 11, 7PM - 10PM

Material:
All lectures notes and corresponding sections in

the textbook.

Assignments 1 and 2

50

Assignments 1 and 2.

Homework and review questions.

