Breadth First Search

Graph Traversal

Application example

Given a graph representation and a vertex sin the graph, find all paths from s to the other vertices.

- Two common graph traversal algorithms:

Breadth-First Search (BFS)

- Idea is similar to level-order traversal for trees.
- Implementation uses a queue.
- Gives shortest path from a vertex to another.

Depth-First Search (DFS)

- Idea is similar to preorder traversal for trees (visit a node then visit its children recursively).
- Implementation uses a stack (implicitly via recursion).

BFS and Shortest Path Problem

Given any source vertex s, BFS visits the other vertices at increasing distances away from s. In doing so, BFS discovers shortest paths from s to the other vertices. What do we mean by "distance"? The number of edges on a path from s (unweighted graph).

Example
Consider s=vertex 1
Nodes at distance 1 ?
2, 3, 7, 9
Nodes at distance 2?
8, 6, 5, 4
Nodes at distance 3 ?
0

How Does BSF Work?

Similarly to level-order traversal for trees.
Code: similar to code of topological sort.
flag $[v]=$ false: we have not visited v
flag $[v]=$ true: we already visited v
The BFS code we will discuss works for both directed and undirected graphs.

Skeleton of BFS Algorithm

Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
$Q=$ empty queue;
enqueue (Q, s);
while Q is not empty
do $v:=\operatorname{dequeue}(Q)$; output v; for each w adjacent to v
enqueue (Q, w)

BFS Algorithm

Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
for each vertex v
do $\operatorname{flag}[v]:=$ false; flag[]: visited or not
3. $Q=$ empty queue;
4. $\operatorname{flag}[s]:=$ true;
5. enqueue (Q, s);
6. while Q is not empty
7. do $v:=$ dequeue (Q); output v;
8. for each w adjacent to v
9. do if $\operatorname{flag}[w]=$ false
10. then $\operatorname{flag}[w]:=$ true;
11. enqueue (Q, w)

Running Time of BFS

Assume adjacency list
$V=$ number of vertices; $E=$ number of edges

[^0]
Running Time of BFS (2)

Recall: Given a graph with E edges

$$
\Sigma_{\text {vertex } v} \operatorname{deg}(v)=2 E
$$

- The total running time of the while loop is:

$$
\mathrm{O}\left(\Sigma_{\text {vertex } v}(1+\operatorname{deg}(\mathrm{v}))\right)=\mathrm{O}(\mathrm{~V}+\mathrm{E})
$$

This is the sum over all the iterations of the while loop!

Homework: What is the running time of BFS if we use an adjacency matrix?

BFS and Unconnected Graphs

A graph may not be connected (strongly connected) \Rightarrow enhance

A graph with 3 components

Recall the BFS Algorithm ...

Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
for each vertex v
do flag $[v]:=$ false;
$Q=$ empty queue;
flag $[s]:=$ true;
enqueue (Q, s);
while Q is not empty
do $v:=$ dequeue(Q); output (v);
for each w adjacent to v do if $\operatorname{flag}[w]=$ false
then $\operatorname{flag}[w]:=$ true;
enqueue (Q, w)

Enhanced BFS Algorithm

A graph with 3 components

- We can re-use the previous $B F S(s)$ method to compute the connected components of a graph G.

BFSearch(G) \{

$i=1$; // component number for every vertex v
flag[v] = false;
for every vertex v
if (flag[v] == false) \{ print ("Component" + i++); BFS(v);

```
    }
```

\}

Applications of BFS

What can we do with the BFS code we just discussed?
Is there a path from source s to a vertex v ?
Check flag[v].

- Is an undirected graph connected?

Scan array flag[].
If there exists flag[u] = false then ...

- Is a directed graph strongly connected?

Scan array flag[].
If there exists flag $[u]=$ false then ...
To output the contents (e.g., the vertices) of a connected (strongly connected) graph

What if the graph is not connected (weakly connected)? Add just a little bit of code and invoke method $B F S(s) \Rightarrow$ discussed later.

Other Applications of BFS

- To find the shortest path from a vertex s to a vertex v in an unweighted graph
- To find the length of such a path
- To find out if a graph contains cycles
- To find the connected components of a graph that is not connected
- To construct a BSF tree/forest from a graph

Next time ...

- Depth First Search (DFS)

Review - Dec. 8
Final exam - Dec. 11

[^0]: Algorithm BFS(s)
 Input: s is the source vertex
 Output: Mark all vertices that can be visited from s.
 for each vertex v
 do flag $[v]:=$ false;
 $Q=$ empty queue;
 flag $[s]:=$ true;
 enqueue (Q, s);
 while Q is not empty
 do $v:=\operatorname{dequeue}(Q)$;
 Each vertex will enter Q at
 do if $\operatorname{flag}[w]=$ false then $\operatorname{flag}[w]:=$ true; enqueue (Q, w)

