
1

Breadth First Search

CSE 2011

Fall 2009

111/29/2009 6:02 PM

Graph Traversal

 Application example
Given a graph representation and a vertex s in the g p p

graph, find all paths from s to the other vertices.

 Two common graph traversal algorithms:
 Breadth-First Search (BFS)

 Idea is similar to level-order traversal for trees.

 Implementation uses a queue.

Gives shortest path from a vertex to another

2

Gives shortest path from a vertex to another.

 Depth-First Search (DFS)
 Idea is similar to preorder traversal for trees (visit a node

then visit its children recursively).

 Implementation uses a stack (implicitly via recursion).

2

BFS and Shortest Path Problem

 Given any source vertex s, BFS visits the other vertices
at increasing distances away from s. In doing so, BFS
di h t t th f t th th tidiscovers shortest paths from s to the other vertices.

 What do we mean by “distance”? The number of edges
on a path from s (unweighted graph).

8

0
Consider s=vertex 1

Example

3

2

4

3

5

1

7
6

9
Nodes at distance 1?

2, 3, 7, 91

1

1

1
2

22

2

s

Nodes at distance 2?
8, 6, 5, 4

Nodes at distance 3?
0

How Does BSF Work?

 Similarly to level-order traversal for trees.

 Code: similar to code of topological sort.
flag[v] = false: we have not visited v
flag[v] = true: we already visited v

The BFS code we will discuss works for both

4

The BFS code we will discuss works for both
directed and undirected graphs.

3

Skeleton of BFS Algorithm

output v;

5

BFS Algorithm

flag[]: visited or not

output v;

6

4

BFS Example

0

Adjacency List

0

1

2

Visited Table (T/F)

F

F

F

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

F

F

F

F

F

F

F

7

Q = { }

Initialize “visited”
table (all False)

Initialize Q to be empty

0

Adjacency List

0

1

2

Visited Table (T/F)

F

F

T

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

F

F

F

F

F

F

F

8

Q = { 2 }

Flag that 2 has
been visited

Place source 2 on the queue

5

0

Adjacency List

0

1

2

Visited Table (T/F)

F

T

TNeighbors

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

F

T

F

F

F

T

F

Neighbors

9

Q = {2} → { 8, 1, 4 }

Mark neighbors
as visited 1, 4, 8

Dequeue 2.
Place all unvisited neighbors of 2 on the queue

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

F

T

F

F

F

T

T

Neighbors

10

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }

Mark newly visited
neighbors 0, 9

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

6

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T
Neighbors

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

F

F

T

T

T

11

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark newly visited
neighbors 3, 7

Dequeue 1.
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

F

F

T

T

T

Neighbors

12

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.
-- 4 has no unvisited neighbors!

7

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

Neighbors

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

F

F

T

T

T

13

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.
-- 0 has no unvisited neighbors!

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

F

F

T

T

TNeighbors

14

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.
-- 9 has no unvisited neighbors!

8

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

T

F

T

T

T

Neighbors

15

Q = { 3, 7 } → { 7, 5 }

Dequeue 3.
-- place neighbor 5 on the queue.

Mark new visited
Vertex 5

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

T

T

T

T

T

Neighbors

16

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.
-- place neighbor 6 on the queue

Mark new visited
Vertex 6

9

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

T

T

T

T

T

Neighbors

17

Q = { 5, 6} → { 6 }

Dequeue 5.
-- no unvisited neighbors of 5

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

T

T

T

T

T

Neighbors

18

Q = { 6 } → { }

Dequeue 6.
-- no unvisited neighbors of 6

10

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

T

T

T

T

T

19

Q = { } STOP!!! Q is empty!!!

What did we discover?

Look at “visited” tables.

There exists a path from source
vertex 2 to all vertices in the graph

Running Time of BFS
 Assume adjacency list

 V = number of vertices; E = number of edges

E h t ill t Q t

20

Each vertex will enter Q at
most once. dequeue is O(1).

The for loop takes time
proportional to deg(v).

11

Running Time of BFS (2)

 Recall: Given a graph with E edges

 The total running time of the while loop is:

 This is the sum over all the iterations of the while loop!

O(Σvertex v (1 + deg(v))) = O(V+E)

Σvertex v deg(v) = 2E

21

This is the sum over all the iterations of the while loop!

 Homework: What is the running time of BFS if we use an
adjacency matrix?

BFS and Unconnected Graphs

P

A graph may not be connected
(strongly connected) enhance
the above BFS code to

D
E

A
C

L
N

M

O
R

Q
P

s

the above BFS code to
accommodate this case.

22

A

F
B

G
K

H

A graph with 3 components

12

Recall the BFS Algorithm …

t t ()

23

output (v);

Enhanced BFS Algorithm

 We can re-use the previous
BFS(s) method to compute the

t d t f
A graph with 3 components

connected components of a
graph G.

BFSearch(G) {
i = 1; // component number

for every vertex v
flag[v] = false;

f tA
C

N

M

L

24

for every vertex v
if (flag[v] == false) {

print (“Component ” + i++);
BFS(v);

}
}

K

H

A

B

13

Applications of BFS

What can we do with the BFS code we just discussed?

 Is there a path from source s to a vertex v?p
 Check flag[v].

 Is an undirected graph connected?
 Scan array flag[].

 If there exists flag[u] = false then …

 Is a directed graph strongly connected?
 Scan array flag[].

 If there exists flag[u] = false then

25

 If there exists flag[u] = false then …

 To output the contents (e.g., the vertices) of a connected (strongly
connected) graph
 What if the graph is not connected (weakly connected)? Add just a little

bit of code and invoke method BFS(s) discussed later.

Other Applications of BFS

 To find the shortest path from a vertex s to a vertex v in
an unweighted graphg g p

 To find the length of such a path

 To find out if a graph contains cycles

 To find the connected components of a graph that is not

26

 To find the connected components of a graph that is not
connected

 To construct a BSF tree/forest from a graph

14

Next time …

Depth First Search (DFS)

Review ─ Dec. 8

Final exam ─ Dec. 11

27

