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Breadth First Search

CSE 2011

Fall 2009

111/29/2009 6:02 PM

Graph Traversal

 Application example
Given a graph representation and a vertex s in the g p p

graph, find all paths from s to the other vertices.

 Two common graph traversal algorithms:
 Breadth-First Search (BFS)

 Idea is similar to level-order traversal for trees.

 Implementation uses a queue.

Gives shortest path from a vertex to another

2

Gives shortest path from a vertex to another.

 Depth-First Search (DFS)
 Idea is similar to preorder traversal for trees (visit a node 

then visit its children recursively).

 Implementation uses a stack (implicitly via recursion).
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BFS and Shortest Path Problem

 Given any source vertex s, BFS visits the other vertices 
at increasing distances away from s.  In doing so, BFS 
di h t t th f t th th tidiscovers shortest paths from s to the other vertices.

 What do we mean by “distance”?  The number of edges 
on a path from s (unweighted graph).
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Nodes at distance 2?
8, 6, 5, 4

Nodes at distance 3?
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How Does BSF Work?

 Similarly to level-order traversal for trees.

 Code: similar to code of topological sort.
flag[v] = false: we have not visited v
flag[v] = true: we already visited v

The BFS code we will discuss works for both
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The BFS code we will discuss works for both 
directed and undirected graphs.
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Skeleton of BFS Algorithm 

output v;
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BFS Algorithm

flag[ ]: visited or not

output v;
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BFS Example
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Q = {    }

Initialize “visited”
table (all False)

Initialize Q to be empty
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Q = {  2   }

Flag that 2 has 
been visited

Place source 2 on the queue
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Q = {2} →  {  8, 1, 4 }

Mark neighbors
as visited 1, 4, 8

Dequeue 2.  
Place all unvisited neighbors of 2 on the queue
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Q = {  8, 1, 4 } → { 1, 4, 0, 9 } 

Mark newly visited
neighbors 0, 9

Dequeue 8.  
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!
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Q = {  1, 4, 0, 9 } → { 4, 0, 9, 3, 7 } 

Mark newly visited
neighbors 3, 7

Dequeue 1.  
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.

0

Adjacency List

0

1

2

Visited Table (T/F)

T

T

T

2

4

3

5

1

7
6

9

8

source

3

4

5

6

7

8

9

T

T

F

F

T

T

T

Neighbors

12

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 } 

Dequeue 4.  
-- 4 has no unvisited neighbors!
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Q = { 0, 9, 3, 7 } → { 9, 3, 7 } 

Dequeue 0.  
-- 0 has no unvisited neighbors!
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Q = { 9, 3, 7 } → { 3, 7 } 

Dequeue 9.  
-- 9 has no unvisited neighbors!
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Q = { 3, 7 } → { 7, 5 } 

Dequeue 3.  
-- place neighbor 5 on the queue.

Mark new visited
Vertex 5
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Q = { 7, 5 } → { 5, 6 } 

Dequeue 7.  
-- place neighbor 6 on the queue

Mark new visited
Vertex 6
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Q = { 5, 6} → { 6 } 

Dequeue 5.  
-- no unvisited neighbors of 5
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Q = { 6 } → {  } 

Dequeue 6.  
-- no unvisited neighbors of 6
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Q = {  } STOP!!!   Q is empty!!!

What did we discover?

Look at “visited” tables.

There exists a path from source
vertex 2 to all vertices in the graph

Running Time of BFS
 Assume adjacency list

 V = number of vertices;   E = number of edges

E h t ill t Q t

20

Each vertex will enter Q at
most once. dequeue is O(1).

The for loop takes time 
proportional to deg(v).
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Running Time of BFS (2)

 Recall: Given a graph with E edges

 The total running time of the while loop is:

 This is the sum over all the iterations of the while loop!

O( Σvertex v  (1 + deg(v)) ) = O(V+E)

Σvertex v  deg(v) = 2E
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This is the sum over all the iterations of the while loop!

 Homework: What is the running time of BFS if we use an 
adjacency matrix?

BFS and Unconnected Graphs

P

A graph may not be connected 
(strongly connected)  enhance
the above BFS code to
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accommodate this case.
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Recall the BFS Algorithm …

t t ( )
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output ( v );

Enhanced BFS Algorithm

 We can re-use the previous 
BFS(s) method to compute the 

t d t f
A graph with 3 components

connected components of a 
graph G.

BFSearch( G )  {
i = 1;     // component number

for every vertex v
flag[v] = false;

f tA
C

N

M

L
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for every vertex v
if ( flag[v] == false ) {

print ( “Component ” +  i++ );
BFS( v );

}
}

K

H

A

B
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Applications of BFS

What can we do with the BFS code we just discussed?

 Is there a path from source s to a vertex v?p
 Check flag[v].

 Is an undirected graph connected?
 Scan array flag[ ].

 If there exists flag[u] = false then …

 Is a directed graph strongly connected?
 Scan array flag[ ].

 If there exists flag[u] = false then

25

 If there exists flag[u] = false then …

 To output the contents (e.g., the vertices) of a connected (strongly 
connected) graph
 What if the graph is not connected (weakly connected)? Add just a little 

bit of code and invoke method BFS(s)  discussed later.

Other Applications of BFS

 To find the shortest path from a vertex s to a vertex v in 
an unweighted graphg g p

 To find the length of such a path

 To find out if a graph contains cycles

 To find the connected components of a graph that is not

26

 To find the connected components of a graph that is not 
connected

 To construct a BSF tree/forest from a graph
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Next time …

Depth First Search (DFS)

Review ─ Dec. 8

Final exam ─ Dec. 11
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