
10/5/2009

1

More on Sorting

CSE 2011

Fall 2009

10/5/2009 1:18 PM 1

When to use which sorting algorithm?

 Large arrays: merge sort, quick sort.

 Small arrays: insertion sort, selection sort.
Recursion is expensive.

Merge sort or quick sort in an average case?

2

Cost of comparing elements

Cost of moving/switching elements

10/5/2009

2

Merge Sort or Quick Sort?

Merge sort
 Lowest number of

Quick sort
 More comparisons

comparisons among popular
algorithms

 Lots of data
movements/copying (merging)

Java
 Generic sort uses Comparator

i i i

p
 Fewer data movements

C++
 Copying large objects is

expensive.
 Comparison is cheap (compiler

does inline optimization).

3

 comparison is expensive.
 Moving is cheap (uses

“pointers” rather than copies of
objects).

Java
 Used for primitive types

(inexpensive comparisons)

Lower Bound for Sorting

Merge sort and heap sort (discussed later)

 t i ti i O(N l N)worst-case running time is O(N log N)

 Are there better algorithms? No.

We need to prove that any sorting algorithm
based on only comparisons takes (N log N)
comparisons in the worst case (worse-case

4

input) to sort N elements.

We will prove this after learning “Trees”.

10/5/2009

3

Linear Time Sorting (O(N))

CSE 2011

Fall 2009

5

Linear Time Sorting

 Can we do better (linear time algorithm) if the
input has special structure (e g uniformlyinput has special structure (e.g., uniformly
distributed, every number can be represented by
d digits)? Yes.

 Counting sort, radix sort, bucket sort

6

10/5/2009

4

Bucket Sort

Given an integer array A of size N,

 A th t ll l t i A h l Assume that all elements in A have values < m.

 Create an array B of size M. Each entry B[i] is
considered a “bucket”.

 For each element A[i], “throw” the element into
bucket B[A[i]].

7

 Example: sort a list of students by GPA.

 Running time = ???

What if m is large?

Bucket Sort (2)

 Each bucket contains
more than one keymore than one key
values.

 After all inputs are thrown
into the buckets, each
bucket will be sorted
(e g using insertion

8

(e.g., using insertion
sort).

 Running time is still O(N).

10/5/2009

5

Extendable Arrays

CSE 2011

Fall 2009

9

Extendable Array Implementation

When push() is called and an overflow occurs (n = N):

 Allocate a new array T of capacity 2N Allocate a new array T of capacity 2N

 Copy contents of the original array V into the first half of
the new array T

 Set V = T

 Perform the insertion using new array V

10

 Note: when the number of elements in the list goes
below a threshold (e.g., N/4), shrink the array by half the
current size N of the array.

10/5/2009

6

Time Analysis

 “push”: inserting an element to be the last element of a
list (or top of a stack)(p)

 add(e) {
Step 1: if overflow then extend the array;
Step 2: “push” e to new array;

}
 Proposition 1:

Let S be a list implemented by means of an extendable

11

Let S be a list implemented by means of an extendable
array V as described before. The total time to perform a
series of n “push” operations in S, starting from S being
empty and V having size N = 1, is O(n).

Time Analysis (2)

Step 2 takes O(n) (each “push” takes O(1))
Step 1:Step 1:
 Allocate a new array T of capacity 2N
 Copy V[i] to T[i] for i = 0, 1, …, N–1
 Set V = T

 If the array is extended k times, then n = 2k

 The total number of copies is:

12

 The total number of copies is:
1 + 2 + 4 + 8 + … + 2k–1 = 2k – 1 = n – 1 = O(n)

 Step 1 + Step 2 = O(n)

10/5/2009

7

Increment Strategies

 java.util.ArrayList and java.util.Vector use extendable
arrays.

it I t d t i h th capacityIncrement determines how the array grows:
capacityIncrement = 0: array size doubles
capacityIncrement = c > 0: array adds c new cells

 Proposition 2:
If we create an initially empty java.util.Vector object with

13

a fixed positive capacityIncrement value, then performing
a series of n push operations on this vector takes (n2)
time.

 (n2): takes at least time n2

Increment Strategies (2)

Step 2 takes O(n) (each “push” takes O(1))
Step 1:Step 1:
 Let a be the initial size of array V
 Let capacityIncrement = c
 If the array is extended k times then n = a + ck
 The total number of copies is:

(a) + (a+c) + (a+2c) + … + (a+(k–1)c) =
ak + c(1+2+ +(k 1)) = ak + ck(k 1)/2 = (k2) = (n2)

14

ak + c(1+2+…+(k–1)) = ak + ck(k–1)/2 = (k2) = (n2)
 We infer (n2) from (n2)

Which is the better increment strategy?

10/5/2009

8

Next time …

 Lab test, Oct. 8, 17:30-19:00.
Be present in the lab (1004 or 1006) by 17:25Be present in the lab (1004 or 1006) by 17:25.

 Reading week: Oct. 11 – 17.
“Succeed in Science” event, Oct. 15.

For more info, visit “science.yorku.ca/sis”.

15

 After the break: “Trees”.

Midterm: Tuesday, Oct. 27.

