

When to use which sorting algorithm?

Large arrays: merge sort, quick sort.

Small arrays: insertion sort, selection sort.
Recursion is expensive.

- Merge sort or quick sort in an average case?

Cost of comparing elements
Cost of moving/switching elements

Merge Sort or Quick Sort?

Merge sort

- Lowest number of comparisons among popular algorithms
Lots of data movements/copying (merging)

Java

- Generic sort uses Comparator
\Rightarrow comparison is expensive.
- Moving is cheap (uses "pointers" rather than copies of objects).

Quick sort

- More comparisons
- Fewer data movements

C++
Copying large objects is expensive.
Comparison is cheap (compiler does inline optimization).

Java

- Used for primitive types (inexpensive comparisons)

Lower Bound for Sorting

Merge sort and heap sort (discussed later)
worst-case running time is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
Are there better algorithms? No.
We need to prove that any sorting algorithm based on only comparisons takes $\Omega(\mathrm{N} \log \mathrm{N})$ comparisons in the worst case (worse-case input) to sort N elements.
We will prove this after learning "Trees".

Linear Time Sorting

Can we do better (linear time algorithm) if the input has special structure (e.g., uniformly distributed, every number can be represented by d digits)? Yes.

Counting sort, radix sort, bucket sort

Bucket Sort

Given an integer array A of size N ,
Assume that all elements in A have values $<\boldsymbol{m}$.
Create an array B of size M. Each entry $B[i]$ is considered a "bucket".
For each element $A[i]$, "throw" the element into bucket B[A[i]].
Example: sort a list of students by GPA.
Running time = ???
What if \boldsymbol{m} is large?

Bucket Sort (2)

Each bucket contains more than one key values.

After all inputs are thrown
 into the buckets, each bucket will be sorted (e.g., using insertion sort).

Running time is still $\mathrm{O}(\mathrm{N})$.

Extendable Array Implementation

When push() is called and an overflow occurs ($n=N$):
Allocate a new array T of capacity $2 N$

- Copy contents of the original array V into the first half of the new array T
Set $V=T$
- Perform the insertion using new array V

Note: when the number of elements in the list goes below a threshold (e.g., $N / 4$), shrink the array by half the current size N of the array.

Time Analysis

"push": inserting an element to be the last element of a list (or top of a stack)

- add(e) \{

Step 1: if overflow then extend the array; Step 2: "push" e to new array;
\}

- Proposition 1:

Let S be a list implemented by means of an extendable array V as described before. The total time to perform a series of n "push" operations in S, starting from S being empty and V having size $N=1$, is $O(n)$.

Time Analysis (2)

Step 2 takes O(n) (each "push" takes O(1))
Step 1:
Allocate a new array T of capacity $2 N$

- Copy V[i] to $T[i]$ for $i=0,1, \ldots, N-1$
- Set $V=T$
- If the array is extended k times, then $n=2^{k}$
- The total number of copies is:
$1+2+4+8+\ldots+2^{k-1}=2^{k}-1=n-1=O(n)$
- Step $1+$ Step $2=O(n)$

Increment Strategies

java.util.ArrayList and java.util.Vector use extendable arrays.
capacityIncrement determines how the array grows:
capacityIncrement $=0: \quad$ array size doubles
capacityIncrement $=c>0: \quad$ array adds c new cells

- Proposition 2 :

If we create an initially empty java.util.Vector object with a fixed positive capacityIncrement value, then performing a series of n push operations on this vector takes $\Omega\left(n^{2}\right)$ time.
$\Omega\left(n^{2}\right)$: takes at least time n^{2}

Increment Strategies (2)

Step 2 takes O(n) (each "push" takes O(1))
Step 1:
Let a be the initial size of array V
Let capacityIncrement $=c$

- If the array is extended k times then $n=a+c k$

The total number of copies is:
$(a)+(a+c)+(a+2 c)+\ldots+(a+(k-1) c)=$ $a \mathrm{k}+\mathrm{c}(1+2+\ldots+(k-1))=\mathrm{ak}+\mathrm{ck}(k-1) / 2=\theta\left(k^{2}\right)=\theta\left(n^{2}\right)$
We infer $\Omega\left(n^{2}\right)$ from $\theta\left(n^{2}\right)$

Which is the better increment strategy?

Next time ...

Lab test, Oct. 8, 17:30-19:00.
Be present in the lab (1004 or 1006) by 17:25.

Reading week: Oct. 11 - 17.
"Succeed in Science" event, Oct. 15.
For more info, visit "science.yorku.ca/sis".

After the break: "Trees".

- Midterm: Tuesday, Oct. 27.

