More on Sorting

CSE 2011
Fall 2009

10/5/2009 1:18 PM 1

When to use which sorting algorithm?

Large arrays: merge sort, quick sort.

Small arrays: insertion sort, selection sort.
Recursion is expensive.

Merge sort or quick sort in an average case?
Cost of comparing elements
Cost of moving/switching elements

10/5/2009

Merge Sort or Quick Sort?

Merge sort

Lowest number of
comparisons among popular
algorithms

Lots of data
movements/copying (merging)

Java
Generic sort uses Comparator
= comparison is expensive.

Moving is cheap (uses
“pointers” rather than copies of
objects).

Quick sort
More comparisons
Fewer data movements

C++
Copying large objects is
expensive.

Comparison is cheap (compiler
does inline optimization).

Java

Used for primitive types
(inexpensive comparisons)

Lower Bound for Sorting

Merge sort and heap sort (discussed later)
worst-case running time is O(N log N)
Are there better algorithms? No.

We need to prove that any sorting algorithm
based on only comparisons takes Q(N log N)
comparisons in the worst case (worse-case

input) to sort N elements.
We will prove this after learning “Trees”.

10/5/2009

Linear Time Sorting (O(N))

CSE 2011
Fall 2009

Linear Time Sorting

Can we do better (linear time algorithm) if the
input has special structure (e.g., uniformly
distributed, every number can be represented by
d digits)? Yes.

Counting sort, radix sort, bucket sort

10/5/2009

10/5/2009

Bucket Sort

Given an integer array A of size N,
Assume that all elements in A have values < m.

Create an array B of size M. Each entry BJ[i] is
considered a “bucket”.

For each element A[i], “throw” the element into
bucket B[A][i]].

Example: sort a list of students by GPA.
Running time = ???
What if m is large?

Bucket Sort (2)

Each bucket contains 29 25 3 49 9 37 21 43
more than one key

<= < T e =
values. 3 2955/ | 35|49
9 21 43
0-9

After all inputs are thrown ote A S A0
into the buckets, each
bucket will be sorted 10-19 2023 3039 40-49

0-9
(e.g., using insertion
3 35 || 37 || 43
sort). 9 9 49
3 9 21 .

25 29 37 43 49

Running time is still O(N).

Extendable Arrays

CSE 2011
Fall 2009

Extendable Array Implementation

When push() is called and an overflow occurs (n = N):
Allocate a new array T of capacity 2N

Copy contents of the original array V into the first half of
the new array T

SetV=T
Perform the insertion using new array V

Note: when the number of elements in the list goes
below a threshold (e.g., N/4), shrink the array by half the
current size N of the array.

10

10/5/2009

Time Analysis

“push”: inserting an element to be the last element of a
list (or top of a stack)

add(e) {
Step 1: if overflow then extend the array;
Step 2: “push” e to new array;

}

Proposition 1.:

Let S be a list implemented by means of an extendable
array V as described before. The total time to perform a
series of n “push” operations in S, starting from S being
empty and V having size N = 1, is O(n).

11

Time Analysis (2)

Step 2 takes O(n) (each “push” takes O(1))
Step 1:
Allocate a new array T of capacity 2N
Copy V[iJto T[ij fori=0, 1, ..., N-1
Setv=T

If the array is extended k times, then n = 2k
The total number of copies is:
1+2+4+8+ .. +2k1=2k_1=n—-1=0(n)

Step 1 + Step 2 = O(n)

12

10/5/2009

Increment Strategies

java.util.ArrayList and java.util.Vector use extendable
arrays.

capacitylncrement determines how the array grows:
capacitylncrement = 0: array size doubles
capacitylncrement = ¢ > 0: array adds c new cells

Proposition 2:

If we create an initially empty java.util.Vector object with
a fixed positive capacitylncrement value, then performing
a series of n push operations on this vector takes Q(n?)
time.

Q(n?): takes at least time n?

13

Increment Strategies (2)

Step 2 takes O(n) (each “push” takes O(1))
Step 1:

Let a be the initial size of array V

Let capacitylncrement = ¢

If the array is extended k times then n = a + ck

The total number of copies is:

(a) + (at+c) + (at2c) + ... + (at(k-1)c) =

ak + c(1+2+...+(k-1)) = ak + ck(k-1)/2 = Ak?) = &n?)
We infer Q(n?) from &(n?)

Which is the better increment strategy?

14

10/5/2009

Next time ...

Lab test, Oct. 8, 17:30-19:00.
Be present in the lab (1004 or 1006) by 17:25.

Reading week: Oct. 11 — 17.
“Succeed in Science” event, Oct. 15.
For more info, visit “science.yorku.ca/sis”.

After the break: “Trees”.
Midterm: Tuesday, Oct. 27.

15

10/5/2009

