
10/5/2009

1

More on Sorting

CSE 2011

Fall 2009

10/5/2009 1:18 PM 1

When to use which sorting algorithm?

 Large arrays: merge sort, quick sort.

 Small arrays: insertion sort, selection sort.
Recursion is expensive.

Merge sort or quick sort in an average case?

2

Cost of comparing elements

Cost of moving/switching elements



10/5/2009

2

Merge Sort or Quick Sort?

Merge sort
 Lowest number of 

Quick sort
 More comparisons

comparisons among popular 
algorithms

 Lots of data 
movements/copying (merging)

Java
 Generic sort uses Comparator

i i i

p
 Fewer data movements

C++
 Copying large objects is 

expensive.
 Comparison is cheap (compiler 

does inline optimization).

3

 comparison is expensive.
 Moving is cheap (uses 

“pointers” rather than copies of 
objects).

Java
 Used for primitive types 

(inexpensive comparisons)

Lower Bound for Sorting

Merge sort and heap sort (discussed later)

 t i ti i O(N l N)worst-case running time is O(N log N)

 Are there better algorithms? No.

We need to prove that any sorting algorithm 
based on only comparisons takes (N log N) 
comparisons in the worst case (worse-case 

4

input) to sort N elements.

We will prove this after learning “Trees”.



10/5/2009

3

Linear Time Sorting (O(N))

CSE 2011

Fall 2009

5

Linear Time Sorting

 Can we  do better (linear time algorithm) if the 
input has special structure (e g uniformlyinput has special structure (e.g., uniformly 
distributed, every number can be represented by 
d digits)? Yes.

 Counting sort, radix sort, bucket sort

6



10/5/2009

4

Bucket Sort

Given an integer array A of size N,

 A th t ll l t i A h l Assume that all elements in A have values < m.

 Create an array B of size M.  Each entry B[i] is 
considered a “bucket”.

 For each element A[i], “throw” the element into 
bucket B[A[i]].

7

 Example: sort a list of students by GPA.

 Running time = ???

What if m is large?

Bucket Sort (2)

 Each bucket contains 
more than one keymore than one key 
values.

 After all inputs are thrown 
into the buckets, each 
bucket will be sorted 
(e g using insertion

8

(e.g., using insertion 
sort).

 Running time is still O(N).



10/5/2009

5

Extendable Arrays

CSE 2011

Fall 2009

9

Extendable Array Implementation

When push() is called and an overflow occurs (n = N):

 Allocate a new array T of capacity 2N Allocate a new array T of capacity 2N

 Copy contents of the original array V into the first half of 
the new array T

 Set V = T

 Perform the insertion using new array V

10

 Note: when the number of elements in the list goes 
below a threshold (e.g., N/4), shrink the array by half the 
current size N of the array.



10/5/2009

6

Time Analysis

 “push”: inserting an element to be the last element of a 
list (or top of a stack)( p )

 add(e) {
Step 1: if overflow then extend the array;
Step 2: “push” e to new array;

}
 Proposition 1: 

Let S be a list implemented by means of an extendable

11

Let S be a list implemented by means of an extendable 
array V as described before.  The total time to perform a 
series of n “push” operations in S, starting from S being 
empty and V having size N = 1, is O(n).

Time Analysis (2)

Step 2 takes O(n) (each “push” takes O(1))
Step 1:Step 1:
 Allocate a new array T of capacity 2N
 Copy V[i] to T[i] for i = 0, 1, …, N–1
 Set V = T

 If the array is extended k times, then n = 2k

 The total number of copies is:

12

 The total number of copies is:
1 + 2 + 4 + 8 + … + 2k–1 = 2k – 1 = n – 1 = O(n)

 Step 1 + Step 2 = O(n)



10/5/2009

7

Increment Strategies

 java.util.ArrayList and java.util.Vector use extendable 
arrays.

it I t d t i h th capacityIncrement determines how the array grows:
capacityIncrement = 0: array size doubles
capacityIncrement = c > 0: array adds c new cells

 Proposition 2:
If we create an initially empty java.util.Vector object with 

13

a fixed positive capacityIncrement value, then performing 
a series of n push operations on this vector takes (n2) 
time.

 (n2): takes at least time n2

Increment Strategies (2)

Step 2 takes O(n) (each “push” takes O(1))
Step 1:Step 1:
 Let a be the initial size of array V
 Let capacityIncrement = c
 If the array is extended k times then n = a + ck
 The total number of copies is:

(a) + (a+c) + (a+2c) + … + (a+(k–1)c) = 
ak + c(1+2+ +(k 1)) = ak + ck(k 1)/2 = (k2) = (n2)

14

ak + c(1+2+…+(k–1)) = ak + ck(k–1)/2 = (k2) = (n2) 
 We infer (n2) from (n2) 

Which is the better increment strategy?



10/5/2009

8

Next time …

 Lab test, Oct. 8, 17:30-19:00.
Be present in the lab (1004 or 1006) by 17:25Be present in the lab (1004 or 1006) by 17:25.

 Reading week: Oct. 11 – 17.
“Succeed in Science” event, Oct. 15.

For more info, visit “science.yorku.ca/sis”.

15

 After the break: “Trees”.

Midterm: Tuesday, Oct. 27.


