
1

Binary Search Trees

CSE 2011

Fall 2009

110/21/2009 1:00 PM

Dictionary ADT

• The dictionary ADT models a
searchable collection of key-
element items

Dictionary ADT methods:
• find(k): if the dictionary has

an item with key k, returns itselement items
• The main operations of a

dictionary are searching,
inserting, and deleting items

• Multiple items with the same key
are allowed

• Applications:
– address book

credit card authorization

an item with key k, returns its
element, else, returns NULL

• findAll(k): returns an iterator
of entries with key k

• insert(k, o): inserts item (k, o)
into the dictionary

• remove(k): if the dictionary
has an item with key k,
removes it from the dictionary
and returns its element else– credit card authorization

– SIN database
– student database

and returns its element, else
returns NULL

• removeAll(k): remove all
entries with key k; return an
iterator of these entries.

• size(), isEmpty()

2

2

Binary Search Tree
• A binary search tree is a

binary tree storing keys (or
key-element pairs) at its
internal nodes and satisfying

• An inorder traversal of a
binary search trees visits the
keys in increasing order

• The left most child has theinternal nodes and satisfying
the following property:

Let u, v, and w be three
nodes such that u is in the
left subtree of v and w is in
the right subtree of v. We
have
key(u)  key(v)  key(w)

• The left-most child has the
smallest key

• The right-most child has the
largest key

6

92

• External nodes (dummies)
do not store items (non-
empty proper binary trees,
for coding simplicity)

41 8

3

Binary Search Trees

4

A binary search tree Not a binary search tree

3

Binary Search Trees
The same set of keys may have different BSTs.

5

• Average depth of a node is O(logN).
• Maximum depth of a node is O(N).
• Smallest key? Largest key?

Inorder Traversal of BST

• Inorder traversal of BST prints out all the keys in
sorted order.

6

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

4

Searching BST

• If we are searching for 15, then we are done.

• If we are searching for a key < 15, then we shouldIf we are searching for a key 15, then we should
search in the left subtree.

• If we are searching for a key > 15, then we should
search in the right subtree.

7

8

5

Search
• To search for a key k,

we trace a downward
path starting at the root

Algorithm TreeSearch(k, v)
if T.isExternal (v)

return (v); // or return NO SUCH KEYp g
• The next node visited

depends on the
outcome of the
comparison of k with the
key of the current node

• If we reach a leaf, the
key is not found and we
return v (where the key
should be if it will be

return (v); // or return NO_SUCH_KEY
if k  key(v)

return TreeSearch(k, T.leftChild(v))
else if k  key(v)

return v
else { k  key(v) }

return TreeSearch(k, T.rightChild(v))

6
inserted)

• Example:
TreeSearch(4, T.root())

• Running time: ?

6

92

41 8







9

Insertion

• To perform operation
insertItem(k, o), we search

6

92



(,),
for key k

• Assume k is not already in
the tree, and let w be the
leaf reached by the search

• We insert k at node w and
expand w into an internal
node using

6

92

41 8





w

g
insertAtExternal(w, (k,e))

• Example:

insertAtExternal(w, (5,e))
with e having key 5

92

41 8

5
w

10

6

Insertion (2)
Insertion with duplicate keys
• Example: insert(2)

C ll T S h(k• Call TreeSearch(k,
leftChild(w)) to find the leaf
node for insertion

• Can insert to either the left
subtree or the right subtree
(call TreeSearch(k,
rightChild(w))

Running time: ?

Homework: implement method
findAll(k)

11

Insertion Algorithm

No duplicate keys
Algorithm TreeInsert(k, e, v) {

With duplicate keys
Algorithm TreeInsert(k, e, v) {

w = TreeSearch(k, v);
T.insertAtExternal(w, (k,e));
return w;

}

Example:
TreeInsert(5, e, T.root())

w = TreeSearch(k, v);
if k = key(w) // key exists

return TreeInsert(
k, e, T.leftChild(w));

T.insertAtExternal(w, (k,e));
return w;

}(, , ()) }

Example:
TreeInsert(2, e, T.root())

12

7

Deletion

• To perform operation
removeElement(k), we

6

92


(),

search for key k

• Assume key k is in the tree,
and let let v be the node
storing k

• Case 1:

If node v has a leaf child w,
we remove v and w from the

92

41 8

5

v
w

6



we remove v and w from the
tree with operation
removeExternal(w)

• Example: remove 4

• Case 2: next slide

92

51 8

13

Deletion (2)
• We consider the case where

the key k to be removed is
stored at a node v whose 3

1
v

children are both internal
– we find the internal node w

that follows v in an inorder
traversal (who is w?)

– we copy key(w) into node v

– we remove node w and its
left child z (which must be a
leaf) by means of operation

8

6 9

5
w

z

2

1leaf) by means of operation
removeExternal(z)

• Example: remove (3)

• Running time: ?

• Homework: implement
removeAll(k)

5

8

6 9

v

2

14

8

Performance

• Consider a dictionary
with n itemswith n items
implemented by means
of a binary search tree
of height h
– the space used is O(n)
– methods find(k) , insert()

and remove(k) take O(h)
time

• The height h is O(n) in
the worst case and
O(log n) in the best
case

15

Next time …

• Midterm test, Oct. 27, 17:25-18:45.

• AVL trees

16

