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Dictionary ADT

• The dictionary ADT models a 
searchable collection of key-
element items

Dictionary ADT methods:
• find(k): if the dictionary has 

an item with key k, returns itselement items
• The main operations of a 

dictionary are searching, 
inserting, and deleting items

• Multiple items with the same key 
are allowed

• Applications:
– address book

credit card authorization

an item with key k, returns its 
element, else, returns NULL

• findAll(k): returns an iterator 
of entries with key k

• insert(k, o): inserts item (k, o) 
into the dictionary

• remove(k): if the dictionary 
has an item with key k, 
removes it from the dictionary 
and returns its element else– credit card authorization

– SIN database
– student database

and returns its element, else 
returns NULL

• removeAll(k): remove all 
entries with key k; return an 
iterator of these entries.

• size(), isEmpty()
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Binary Search Tree
• A binary search tree is a 

binary tree storing keys (or 
key-element pairs) at its 
internal nodes and satisfying

• An inorder traversal of a 
binary search trees visits the 
keys in increasing order

• The left most child has theinternal nodes and satisfying 
the following property:

Let u, v, and w be three 
nodes such that u is in the 
left subtree of v and w is in 
the right subtree of v. We 
have 
key(u)  key(v)  key(w)

• The left-most child has the 
smallest key

• The right-most child has the 
largest key
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• External nodes (dummies) 
do not store items (non-
empty proper binary trees, 
for coding simplicity)
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Binary Search Trees
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A binary search tree Not a binary search tree
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Binary Search Trees
The same set of keys may have different BSTs.
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• Average depth of a node is O(logN).
• Maximum depth of a node is O(N).
• Smallest key? Largest key?

Inorder Traversal of BST

• Inorder traversal of BST prints out all the keys in 
sorted order.
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Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20



4

Searching BST

• If we are searching for 15, then we are done.

• If we are searching for a key < 15, then we shouldIf we are searching for a key  15, then we should 
search in the left subtree.

• If we are searching for a key > 15, then we should 
search in the right subtree.
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Search
• To search for a key k, 

we trace a downward 
path starting at the root

Algorithm TreeSearch(k, v)
if T.isExternal (v)

return (v); // or return NO SUCH KEYp g
• The next node visited 

depends on the 
outcome of the 
comparison of k with the 
key of the current node

• If we reach a leaf, the 
key is not found and we 
return v (where the key 
should be if it will be 

return (v);      // or return NO_SUCH_KEY
if k  key(v)

return TreeSearch(k, T.leftChild(v))
else if k  key(v)

return v
else { k  key(v) }

return TreeSearch(k, T.rightChild(v))
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• Example: 
TreeSearch(4, T.root())

• Running time: ?
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Insertion

• To perform operation 
insertItem(k, o), we search 
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for key k

• Assume k is not already in 
the tree, and let w be the 
leaf reached by the search

• We insert k at node w and 
expand w into an internal 
node using 
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insertAtExternal(w, (k,e))

• Example: 

insertAtExternal(w, (5,e)) 
with e having key 5
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Insertion (2)
Insertion with duplicate keys
• Example: insert(2)

C ll T S h(k• Call TreeSearch(k, 
leftChild(w)) to find the leaf 
node for insertion

• Can insert to either the left 
subtree or the right subtree 
(call TreeSearch(k, 
rightChild(w)) 

Running time: ?

Homework: implement method 
findAll(k)
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Insertion Algorithm

No duplicate keys
Algorithm TreeInsert(k, e, v) {

With duplicate keys
Algorithm TreeInsert(k, e, v) {

w = TreeSearch(k, v);
T.insertAtExternal(w, (k,e));
return w;

}

Example: 
TreeInsert(5, e, T.root())

w = TreeSearch(k, v);
if k = key(w)   // key exists

return TreeInsert(
k, e, T.leftChild(w));

T.insertAtExternal(w, (k,e));
return w;

}( , , ()) }

Example: 
TreeInsert(2, e, T.root())
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Deletion

• To perform operation 
removeElement(k), we 
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search for key k

• Assume key k is in the tree, 
and let let v be the node 
storing k

• Case 1:

If node v has a leaf child w, 
we remove v and w from the

92

41 8

5

v
w

6



we remove v and w from the 
tree with operation 
removeExternal(w)

• Example: remove 4

• Case 2: next slide
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Deletion (2)
• We consider the case where 

the key k to be removed is 
stored at a node v whose 3

1
v

children are both internal
– we find the internal node w 

that follows v in an inorder 
traversal (who is w?)

– we copy key(w) into node v

– we remove node w and its 
left child z (which must be a 
leaf) by means of operation
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1leaf) by means of operation 
removeExternal(z)

• Example: remove (3)

• Running time: ?

• Homework: implement 
removeAll(k)
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Performance

• Consider a dictionary 
with n itemswith n items 
implemented by means 
of a binary search tree 
of height h
– the space used is O(n)
– methods find(k) , insert() 

and remove(k) take O(h) 
time

• The height h is O(n) in 
the worst case and 
O(log n) in the best 
case
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Next time …

• Midterm test, Oct. 27, 17:25-18:45.

• AVL trees
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