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AVL Trees
• AVL trees are 

balanced. 44
4

• An AVL Tree is a 
binary search tree
such that for every 
internal node v of T, 
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the heights of the 
children of v can differ 
by at most 1. An example of an AVL tree where the 

heights are shown next to the nodes
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Height of an AVL Tree

• Proposition: The height of an AVL tree T storing n 
keys is O(log n)keys is O(log n).

Proof: 
• Find n(h): the minimum number of internal nodes of 

an AVL tree of height h
• We see that n(1) = 1 and n(2) = 2

F h ≥ 3 AVL t f h i ht h t i th t
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• For h ≥ 3, an AVL tree of height h contains the root 
node, one AVL subtree of height h1 and the other 
AVL subtree of height h2.

• i.e. n(h) = 1 + n(h1) + n(h2)

Height of an AVL Tree (2)

• Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2)
n(h) > 2n(h 2)n(h) > 2n(h-2)
n(h) > 4n(h-4)
…
n(h) > 2in(h-2i)

• Solving the base case we get: n(h) ≥ 2 h/2-1
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• Taking logarithms: h < 2log n(h) +2

• Thus the height of an AVL tree is O(log n)
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Insertion in an AVL Tree
• Insertion is as in a binary search tree
• Always done by expanding an external node.
• Example:
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before insertion after insertion

Insertion (2)

• A binary search tree T is called balanced if for every node 
v the height of v’s children differ by at most 1v, the height of v s children differ by at most 1.

• Inserting a node into an AVL tree involves performing 
insertAtExternal(w, e) on T, which changes the heights of 
some of the nodes in T.

• If an insertion causes T to become unbalanced, we travel 
up the tree from the newly created node w until we find the 
first node z that is unbalanced.

• y = child of z with higher height (Note: y = ancestor of w)
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• y = child of z with higher height (Note: y = ancestor of w)
• x = child of y with higher height 

(Note: x = ancestor of w or x = w)
• Since z became unbalanced by an insertion in the subtree 

rooted at its child y, height(y) = height(sibling(y)) + 2 
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Insertion: rebalancing

• Now to rebalance...

• To rebalance the subtree rooted at z, we must perform 
a restructuring

• We rename x, y, and z to a, b, and c based on the order 
of the nodes in an in-order traversal (4 possible 
mappings)
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• z is replaced by b, whose children are now a and c 
whose children, in turn, consist of the four other 
subtrees formerly children of x, y, and z.

Trinode Restructuring
• let (a,b,c) be an inorder listing of x, y, z
• perform the rotations needed to make b the topmost node of the 

threethree

b=y

a=z

c=x

T0

T1 b=y

c=y

b=x

a=z

T0

T3
b=x

case 2: double rotation
(a right rotation about c, 
then a left rotation about a)

(other two cases 
are symmetrical)
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T1

T2 T3

b=y

a=z c=x

T0 T1 T2 T3

T1 T2

b=x

c=ya=z

T0 T1 T2 T3

case 1: single rotation
(a left rotation about a)
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Insertion Example
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Restructuring
Single rotations

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x
b = y

a = z
single rotation
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T3
T2

T1

T0

a = x
b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
single rotation
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Restructuring (2)
Double rotations

double rotationdouble rotationa = z

b = x
c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y
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double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y

Restructure Algorithm
Algorithm restructure(x):

I t A d f bi h t T th t h b th tInput: A node x of a binary search tree T that has both a parent y
and a grandparent z
Output: Tree T restructured by a rotation (either 

single or double) involving nodes x, y, and z.

1. Let (a, b, c) be an inorder listing of the nodes x, y, and z, and let (T0, 
T1, T2, T3) be an inorder listing of the the four subtrees of x, y, and 
z, not rooted at x, y, or z.

2 Replace the subtree rooted at z with a new subtree rooted at b
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2. Replace the subtree rooted at z with a new subtree rooted at b
3. Let a be the left child of b and let T0, T1 be the left and right 

subtrees of a, respectively.
4. Let c be the right child of b and let T2, T3 be the left and right 

subtrees of c, respectively.
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Cut/Link Restructure Algorithm

• Any tree that needs to be balanced can be grouped into 7 
t d th 4 t h d t th hild fparts: x, y, z, and the 4 trees anchored at the children of 

those nodes (T0, T1, T2, T3)
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Cut/Link Restructure Algorithm

• Number the 7 parts by doing an inorder traversal 
• x y and z are now renamed based upon their order withinx,y, and z are now renamed based upon their order within 

the inorder traversal
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Cut/Link Restructure Algorithm

• Now we can re-link these subtrees to the main tree.
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• Link in node 4 (b) where the subtree’s root formerly
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Cut/Link Restructure Algorithm

• Link in nodes 2 (a) and 6 (c) as children of node 4.
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44 78

a c2 6
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Cut/Link Restructure Algorithm

• Finally, link in subtrees 1 and 3 as the children of node 2, 
and subtrees 5 and 7 as the children of 6and subtrees 5 and 7 as the children of 6.
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Analysis of Cut/Link Restructure 
Algorithm

• This algorithm for restructuring has the exact 
same effect as using the four rotation cases 
discussed earlier.

• Advantages: no case analysis, more elegant

• Disadvantage: can be more code to write
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Disadvantage: can be more code to write

• Same time complexity
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Removal

• Performing a removeExternal(w) can cause T to 
become unbalancedbecome unbalanced.

• Let z be the first unbalanced node encountered while 
travelling up the tree from w. 

• y = child of z with higher height (y  ancestor of w)
• x = child of y with higher height, or either child if two 

children of y have the same height.
• Perform operation restructure(x) to restore balance at
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Perform operation restructure(x) to restore balance at 
the subtree rooted at z.

• As this restructuring may upset the balance of another 
node higher in the tree, we must continue checking for 
balance until the root of T is reached.

Removal Example
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Removal Example (2)
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Whew, balanced!
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Next time …

• Heaps (8.3)
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