AVL Trees

CSE 2011

Fall 2009

AVL Trees

- AVL trees are balanced.
- An AVL Tree is a binary search tree such that for every internal node v of T , the heights of the
 children of v can differ by at most 1.

An example of an AVL tree where the heights are shown next to the nodes

Height of an AVL Tree

- Proposition: The height of an AVL tree T storing n keys is $\mathrm{O}(\log n)$.

Proof:

- Find $\mathbf{n}(\mathbf{h})$: the minimum number of internal nodes of an AVL tree of height h
- We see that $n(1)=1$ and $n(2)=2$
- For $h \geq 3$, an AVL tree of height h contains the root node, one AVL subtree of height $\mathrm{h}-1$ and the other AVL subtree of height $h-2$.
- i.e. $n(h)=1+n(h-1)+n(h-2)$

Height of an AVL Tree (2)

- Knowing $n(h-1)>n(h-2)$, we get $n(h)>2 n(h-2)$

$$
\begin{aligned}
& n(h)>2 n(h-2) \\
& n(h)>4 n(h-4) \\
& \ldots \\
& n(h)>2^{i} n(h-2 i)
\end{aligned}
$$

- Solving the base case we get: $n(h) \geq 2^{h / 2-1}$
- Taking logarithms: $\mathrm{h}<2 \log \mathrm{n}(\mathrm{h})+2$
- Thus the height of an AVL tree is $\mathrm{O}(\log \mathrm{n})$

Insertion in an AVL Tree

- Insertion is as in a binary search tree
- Always done by expanding an external node.
- Example:

before insertion

after insertion

Insertion (2)

- A binary search tree T is called balanced if for every node v, the height of v's children differ by at most 1.
- Inserting a node into an AVL tree involves performing insertAtExternal(w, e) on T, which changes the heights of some of the nodes in T .
- If an insertion causes T to become unbalanced, we travel up the tree from the newly created node w until we find the first node z that is unbalanced.
- $y=$ child of z with higher height (Note: $y=$ ancestor of w)
- $x=$ child of y with higher height
(Note: $x=$ ancestor of w or $x=w$)
- Since z became unbalanced by an insertion in the subtree rooted at its child y, height $(\mathrm{y})=\operatorname{height}($ sibling $(\mathrm{y}))+2$

Insertion: rebalancing

- Now to rebalance...
- To rebalance the subtree rooted at z, we must perform a restructuring
- We rename x, y, and z to a, b, and c based on the order of the nodes in an in-order traversal (4 possible mappings)
- z is replaced by b, whose children are now a and c whose children, in turn, consist of the four other subtrees formerly children of x, y, and z.

Trinode Restructuring

- let (a, b, c) be an inorder listing of x, y, z
- perform the rotations needed to make b the topmost node of the three

Insertion Example

unbalanced...

...balanced

Restructuring

Single rotations

Restructuring (2)

Restructure Algorithm

Algorithm restructure (x) :

Input: A node x of a binary search tree T that has both a parent y and a grandparent z
Output: Tree T restructured by a rotation (either
single or double) involving nodes x, y, and z .

1. Let (a, b, c) be an inorder listing of the nodes x, y, and z, and let (TO, T1, T2, T3) be an inorder listing of the the four subtrees of x, y, and z, not rooted at x, y, or z.
2. Replace the subtree rooted at z with a new subtree rooted at b
3. Let a be the left child of b and let T0, T1 be the left and right subtrees of a, respectively.
4. Let c be the right child of b and let T2, T3 be the left and right subtrees of c, respectively.

Cut/Link Restructure Algorithm

- Any tree that needs to be balanced can be grouped into 7 parts: x, y, z, and the 4 trees anchored at the children of those nodes $\left(T_{0}, T_{1}, T_{2}, T_{3}\right)$

Cut/Link Restructure Algorithm

- Number the 7 parts by doing an inorder traversal
- x, y, and z are now renamed based upon their order within the inorder traversal

Cut/Link Restructure Algorithm

- Now we can re-link these subtrees to the main tree.
- Link in node 4 (b) where the subtree's root formerly

Cut/Link Restructure Algorithm

- Link in nodes 2 (a) and 6 (c) as children of node 4.

Cut/Link Restructure Algorithm

- Finally, link in subtrees 1 and 3 as the children of node 2 , and subtrees 5 and 7 as the children of 6 .

Analysis of Cut/Link Restructure Algorithm

- This algorithm for restructuring has the exact same effect as using the four rotation cases discussed earlier.
- Advantages: no case analysis, more elegant
- Disadvantage: can be more code to write
- Same time complexity

Removal

- Performing a removeExternal(w) can cause T to become unbalanced.
- Let z be the first unbalanced node encountered while travelling up the tree from w.
- $y=$ child of z with higher height ($y \neq$ ancestor of w)
- $x=$ child of y with higher height, or either child if two children of y have the same height.
- Perform operation restructure(x) to restore balance at the subtree rooted at z.
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.

Removal Example

Whew, balanced!

Removal Example (2)

Next time ...

- Heaps (8.3)

