Algorithm Analysis (part 2)

CSE 2011
Fall 2009

Growth Rate

- The idea is to establish a relative order among functions for large n.
$\exists \mathrm{c}, \mathrm{n}_{0}>0$ such that $\mathrm{f}(\mathrm{N}) \leq \mathrm{c} g(\mathrm{~N})$ when $\mathrm{N} \geq \mathrm{n}_{0}$
f(N) grows no faster than $g(N)$ for "large" N

Asymptotic Notation: Big-Oh

$$
f(N)=O(g(N))
$$

There are positive constants c and n_{0} such that

$$
f(N) \leq c . g(N) \text { when } N \geq n_{0}
$$

The growth rate of $f(N)$ is less than or equal to the growth rate of $g(N)$
$g(N)$ is an upper bound on $f(N)$

Big-Oh: Examples

Let $f(N)=2 N^{2}$. Then
$f(\mathrm{~N})=\mathrm{O}\left(\mathrm{N}^{4}\right)$
$f(N)=O\left(N^{3}\right)$
$f(N)=O\left(N^{2}\right)$ (best answer, asymptotically tight)

O(N2): reads "order N-squared" or "Big-Oh Nsquared"

Big Oh: More Examples

- $\mathrm{N}^{2} / 2-3 \mathrm{~N}=\mathrm{O}\left(\mathrm{N}^{2}\right)$
- $1+4 \mathrm{~N}=\mathrm{O}(\mathrm{N})$
- $7 \mathrm{~N}^{2}+10 \mathrm{~N}+3=\mathrm{O}\left(\mathrm{N}^{2}\right)=\mathrm{O}\left(\mathrm{N}^{3}\right)$
- $\log _{10} \mathrm{~N}=\log _{2} \mathrm{~N} / \log _{2} 10=\mathrm{O}\left(\log _{2} \mathrm{~N}\right)=\mathrm{O}(\log \mathrm{N})$
- $\sin \mathrm{N}=\mathrm{O}(1) ; 10=\mathrm{O}(1), 10^{10}=\mathrm{O}(1)$
$\sum_{i=1}^{N} i \leq N \cdot N=O\left(N^{2}\right)$
$\sum_{i=1}^{N} i^{2} \leq N \cdot N^{2}=O\left(N^{3}\right)$
- $\log \mathrm{N}+\mathrm{N}=\mathrm{O}(\mathrm{N})$
$\log ^{\mathrm{k}} \mathrm{N}=\mathrm{O}(\mathrm{N})$ for any constant k
- $\mathrm{N}=\mathrm{O}\left(2^{\mathrm{N}}\right)$, but 2^{N} is not $\mathrm{O}(\mathrm{N})$
- $2^{10 \mathrm{~N}}$ is not $\mathrm{O}\left(2^{\mathrm{N}}\right)$

Math Review: Logarithmic Functions

$$
\begin{aligned}
& x^{a}=b \quad \text { iff } \quad \log _{x} b=a \\
& \log a b=\log a+\log b \\
& \log _{a} b=\frac{\log _{m} b}{\log _{m} a} \\
& \log a^{b}=b \log a \\
& a^{\log n}=n^{\log a} \\
& \log ^{b} a=(\log a)^{b} \neq \log a^{b} \\
& \frac{d \log _{e} x}{d x}=\frac{1}{x}
\end{aligned}
$$

Some Rules

When considering the growth rate of a function using O()

- Ignore the lower order terms and the coefficients of the highest-order term
No need to specify the base of logarithm
Changing the base from one constant to another changes the value of the logarithm by only a constant factor

If $\mathrm{T}_{1}(\mathrm{~N})=\mathrm{O}\left(\mathrm{f}(\mathrm{N})\right.$ and $\mathrm{T}_{2}(\mathrm{~N})=\mathrm{O}(\mathrm{g}(\mathrm{N}))$, then
$\mathrm{T}_{1}(\mathrm{~N})+\mathrm{T}_{2}(\mathrm{~N})=\mathrm{O}(\mathrm{f}(\mathrm{N})+\mathrm{g}(\mathrm{N}))$
(or less formally it is max $(\mathrm{O}(\mathrm{f}(\mathrm{N})), \mathrm{O}(\mathrm{g}(\mathrm{N})))$),
$\mathrm{T}_{1}(\mathrm{~N}) * \mathrm{~T}_{2}(\mathrm{~N})=\mathrm{O}(\mathrm{f}(\mathrm{N}) * \mathrm{~g}(\mathrm{~N}))$

Big-Omega

$\exists \mathrm{c}, \mathrm{n}_{0}>0$ such that $\mathrm{f}(\mathrm{N}) \geq \mathrm{c} \mathrm{g}(\mathrm{N})$ when $\mathrm{N} \geq \mathrm{n}_{0}$

- $f(N)$ grows no slower than $g(N)$ for "large" N

Big-Omega

$\mathrm{f}(\mathrm{N})=\Omega(\mathrm{g}(\mathrm{N}))$

There are positive constants c and n_{0} such that

$$
f(N) \geq c g(N) \text { when } N \geq n_{0}
$$

The growth rate of $f(\mathrm{~N})$ is greater than or equal to the growth rate of $g(N)$.

Big-Omega: Examples

Let $f(N)=2 N^{2}$. Then
$f(N)=\Omega(N)$
$f(N)=\Omega\left(N^{2}\right) \quad$ (best answer)

Big-Theta

The growth rate of $f(N)$ is the same as the growth rate of $g(N)$
$f(N)=\Theta(g(N))$ iff $f(N)=O(g(N))$ and $f(N)=\Omega(g(N))$

Big-Theta: Example

Let $f(N)=N^{2}, g(N)=2 N^{2}$
Since $f(N)=O(g(N))$ and $f(N)=\Omega(g(N))$, $f(N)=\Theta(g(N))$.
($\mathrm{c}_{1}=1, \mathrm{n}_{1}=0$
$\mathrm{c}_{2}=1 / 2, \mathrm{n}_{2}=0$

Typical Growth Rates

Function	Name
c	Constant
$\log _{2} N$	Logarithmic
$\log ^{2} N$	Log-squared
N	Linear
$N \log N$	
N^{2}	Quadratic
N^{3}	Cubic
2^{N}	Exponential

Figure 2.1 Typical growth rates

Some More Rules

If $T(N)$ is a polynomial of degree k, then $T(N)=\Theta\left(N^{k}\right)$.

For logarithmic functions, $\mathrm{T}\left(\log _{m} \mathrm{~N}\right)=\Theta(\log \mathrm{N})$.
$\log ^{k} \mathrm{~N}=\mathrm{O}(\mathrm{N})$ for any constant k (logarithms grow very slowly)

Small-oh

$f(N)=\boldsymbol{o}(g(N))$
$\forall c, \exists n_{0}$ such that $f(N)<c g(N)$ when $N>n_{0}$

Less formally, $\mathrm{f}(\mathrm{N})=\boldsymbol{o}(\mathrm{g}(\mathrm{N}))$
if $f(N)=\boldsymbol{O}(g(N))$ and $f(N) \neq \boldsymbol{\Theta}(g(N))$
$g(N)$ grows faster than $f(N)$ for "large" N.

Small-oh: Example

Let $f(N)=3 / 4 N^{2}$ and $f(N)=\boldsymbol{o}(g(N))$
$g(N)=N^{2}$?
$g(N)=N^{2} \log N$?
$\mathrm{g}(\mathrm{N})=\mathrm{N}^{3}$?

Determining Relative Growth Rates of Two Functions

Using simple algebra (Figure 2.1)
Example:
$f(N)=N \log N$
$g(N)=N^{1.5}$

Using L'Hôpital's rule

Using L' Hôpital's Rule

L' Hôpital's rule

$$
\begin{aligned}
& \text { If } \lim _{n \rightarrow \infty} f(N)=\infty \text { and } \lim _{n \rightarrow \infty} g(N)=\infty \\
& \text { then } \lim _{n \rightarrow \infty} \frac{f(N)}{g(N)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(N)}{g^{\prime}(N)}
\end{aligned}
$$

Determine the relative growth rates: compute $\lim _{n \rightarrow \infty} \frac{f(N)}{g(N)}$

```
if 0: }\quadf(N)=\boldsymbol{O}(g(N)
if constant }=0:f(N)=\Theta(g(N)
if \infty: }\quad\textrm{g}(\textrm{N})=\boldsymbol{o}(\textrm{f}(\textrm{N})
limit oscillates: no relation
```


Next time ...

Recursion

