
1

Algorithm Analysis

CSE 2011
Fall 2009

10 September 2009 1

Introduction
What is an algorithm?

a clearly specified set of simple instructions to be
followed to solve a problem

Takes a set of values, as input and
produces a value, or set of values, as output

May be specified
In English
As a computer program

2

As a pseudo-code

Data structures
Methods of organizing data

Program = algorithms + data structures

2

Introduction

Why need algorithm analysis ?
writing a working program is not good enough
The program may be inefficient!
If the program is run on a large data set, then
the running time becomes an issue

3

Example: Selection Problem

Given a list of N numbers, determine the
kth l t h k ≤ Nkth largest, where k ≤ N.
Algorithm 1:
(1) Read N numbers into an array
(2) Sort the array in decreasing order by some

simple algorithm

4

p g
(3) Return the element in position k

3

Example: Selection Problem (2)

Algorithm 2:
(1) Read the first k elements into an array and

sort them in decreasing order
(2) Each remaining element is read one by one

If smaller than the kth element, then it is ignored
Otherwise, it is placed in its correct spot in the array,
bumping one element out of the array

5

bumping one element out of the array.
(3) The element in the kth position is returned as

the answer.

Example: Selection Problem (3)

Which algorithm is better when
N = 100 and k = 100?N = 100 and k = 100?
N = 100 and k = 1?

What happens when N = 1,000,000 and k = 500,000?

There exist better algorithms

6

There exist better algorithms

4

Algorithm Analysis

We only analyze correct algorithms

An algorithm is correct
If, for every input instance, it halts with the correct output

Incorrect algorithms

7

Might not halt at all on some input instances
Might halt with other than the desired answer

Algorithm Analysis (2)

Analyzing an algorithm
P di ti th th t th l ithPredicting the resources that the algorithm
requires
Resources include

Memory
Communication bandwidth
Computational time (usually most important)

8

Computational time (usually most important)

5

Algorithm Analysis (3)
Factors affecting the running time

computer
compiler
algorithm used
input to the algorithm

The content of the input affects the running time
typically, the input size (number of items in the input) is the main
consideration

• E.g. sorting problem ⇒ the number of items to be sorted
• E.g. multiply two matrices together ⇒ the total number of elements in

9

g p y g
the two matrices

Machine model assumed
Instructions are executed one after another, with no concurrent
operations ⇒ not parallel computers

Worst- / Average- / Best-Case
Worst-case running time of an algorithm

The longest running time for any input of size n
A b d th i ti f i tAn upper bound on the running time for any input
⇒ guarantee that the algorithm will never take longer
Example: Sort a set of numbers in increasing order; and
the input is in decreasing order
The worst case can occur fairly often

E.g. in searching a database for a particular piece of
information

10

Best-case running time
sort a set of numbers in increasing order; and the input is
already in increasing order

Average-case running time
May be difficult to define what “average” means

6

Example

Given an array of integers, return true if
th t i b 100 d f lthe array contains number 100, and false
otherwise.

Best case: ?
Worst case: ?
Average case: ?g

11

Running Time of Algorithms

Bounds are for algorithms, rather than programs
Programs are just implementations of an algorithm andPrograms are just implementations of an algorithm, and
almost always the details of the program do not affect
the bounds.

Bounds are for algorithms, rather than problems
A problem can be solved with several algorithms, some

12

are more efficient than others.

7

Analysis Model

It takes exactly one time unit to do any
calculation such as addition multiplicationcalculation such as addition, multiplication,
assignment, comparison, etc.
There is infinite amount of memory.
It does not consider the cost associated with
page faulting or swapping.
It does not include I/O costs (which is usually

13

(y
one or more orders of magnitude higher than
computation costs).

An Example

int sum (int n)

{{

int partialSum;

partialSum = 0;/* 1 */

for (int i=0; i <= n-1; i++) /*2*/

partialSum += i*i*i; /* 3 */

return partialSum; /* 4 */

14

return partialSum; / 4 /

}

8

An Example (cont’d)

Lines 1 and 4: one unit each
Li 3 4NLine 3: 4N
Line 2: 1+(N+1)+N=2N+2
Total: 6N+4 ⇒ O(N)

15

Running Time Calculations

Throw away leading constants
Th l d tThrow away low-order terms
Compute a Big-Oh running time:

An upper bound for running time
Never underestimate the running time of a program
The program may end earlier, but never later (worst-
case running time)

16

case running time)

9

General Rules for Big-Oh

for loops
at most the running time of the statements inside the for
loop (including tests) times the number of iterations.

Nested for loops

17

the running time of the statement multiplied by the
product of the sizes of all the for loops.
O(N 2)

General Rules for Big-Oh (cont’d)

Consecutive statements

These just add.
O(N) + O(N2) = O(N2)

18

O(N) + O(N2) = O(N2)
if C then S1
else S2

never more than the running time of the test plus the larger
of the running times of S1 and S2.

10

Strategies

Analyze from the inside out.
If th th d ll l th fi tIf there are method calls, analyze these first.
Recursive methods (later):

Could be just a hidden “for” loop ⇒ simple.
Solve a recurrence (more complex)

19

Example: Insertion Sort

1) Initially p = 1

2) Let the first p elements be sorted.

3) Insert the (p+1)th element properly in the list so

20

) (p) p p y
that now p+1 elements are sorted.

4) Increment p and go to step (3)

11

Insertion Sort: Example

21

Insertion Sort: Algorithm

* Consists of N - 1 passes
http://www.cis.upenn.edu/~matuszek/cse121-2003/Applets/Chap03/Insertion/InsertSort.html

22

Consists of N - 1 passes
* For pass p = 1 through N - 1, ensures that the

elements in positions 0 through p are in sorted order
n elements in positions 0 through p - 1 are already sorted
n move the element in position p left until its correct place is

found among the first p + 1 elements

12

Example 2

To sort the following numbers in increasing order:

34 8 64 51 32 21

p = 1; tmp = 8;

34 > tmp, so second element a[1] is set to 34: {8, 34}…

23

We have reached the front of the list. Thus, 1st position a[0] = tmp=8

After 1st pass: 8 34 64 51 32 21

(first 2 elements are sorted)

P = 2; tmp = 64;
34 < 64, so stop at 3rd position and set 3rd position = 64
After 2nd pass: 8 34 64 51 32 21

(first 3 elements are sorted)

P = 3; tmp = 51;
51 < 64, so we have 8 34 64 64 32 21,
34 < 51, so stop at 2nd position, set 3rd position = tmp,
After 3rd pass: 8 34 51 64 32 21

(first 4 elements are sorted)
P = 4; tmp = 32,
32 < 64, so 8 34 51 64 64 21,
32 < 51 so 8 34 51 51 64 21

24

32 < 51, so 8 34 51 51 64 21,
next 32 < 34, so 8 34 34, 51 64 21,
next 32 > 8, so stop at 1st position and set 2nd position = 32,
After 4th pass: 8 32 34 51 64 21

P = 5; tmp = 21, . . .
After 5th pass: 8 21 32 34 51 64

13

Analysis: Worst-case Running Time

25

Inner loop is executed p times, for each p=1..N-1
⇒ Overall: 1 + 2 + 3 + . . . + N-1 = …= O(N2)

Space requirement is O(?)

Analysis

The bound is tight Θ(N2).
There exist inputs that actually use Ω(N2) timeThere exist inputs that actually use Ω(N2) time.
Consider a reversed sorted list as input:

When a[p] is inserted into the sorted a[0..p-1], we
need to compare a[p] with all elements in a[0..p-1]
and move each element one position to the right
⇒ Ω(i) steps

26

⇒ Ω(i) steps
The total number of steps is Ω(Σ1

N-1 i) = Ω(N(N-
1)/2) = Ω(N2)

14

Analysis: Best-case Running Time

The input is already sorted in increasing order:
Wh i ti [] i t th t d [0 1]When inserting a[p] into the sorted a[0..p-1],
only need to compare a[p] with a[p-1] and
there is no data movement.
For each iteration of the outer for-loop, the
inner for-loop terminates after checking the
loop condition once ⇒ O(N) time

27

loop condition once ⇒ O(N) time

If input is nearly sorted, insertion sort runs fast.

Next time …

Growth rates
O Ω ΘO, Ω, Θ, o

28

