
York University CSE 2001 December 7, 2009

Hints for Exam Review Questions

If you are really stuck on one of the review questions, then you can refer to
these hints for that question. But doing so REALLY reduces the value (in terms
of preparing for the exam) of working on the problem and solving it yourself.
You won’t be getting hints during the exam, obviously. So you should only look
here after spending a lot of time on the review questions yourself first.

Regular Languages

1. Think about what pieces of information your DFA has to remember as it processes the string
so that it can decide at the end whether the entire string is in L1. You should remember as
little information as you can.

2. It might actually be easiest to design a DFA for this language. (Remember that a DFA is
also an NFA.)

3. For L2, it helps to first reformulate the definition of the language to describe what strings
are in the language (rather than which strings are not in the language).

4. Use the Pumping Lemma.

5. This language is the union of two simpler languages.

6. There are several ways to solve this question. One would be to inductively construct a
regular expression for Prefix(L), given a regular expression for L. But the easiest way is
to modify the DFA for L to accept Prefix(L).

7. Use induction on the number of steps the machine has taken to prove that after processing
an even number of characters, the machine is in a non-accepting state.

8. Recall that we can construct a DFA that accepts the intersection of the languages accepted
by two given DFAs.

Context-Free Languages

9. Your CFG should ensure that each 2 added to the end of the string has a matching 0 or 1
added to the beginning of the string. Then there should be some extra 0’s and/or 1’s.

10. The stack is useful for checking the constraint that m ≥ n. The constraint that n is even
can be checked without using the stack (since this property can be checked by a DFA).

1 over. . .

11. First, let’s look at what can be generated by T . The following two claims can each be proved
by induction on j.

Claim 1: For all j ≥ 0, T generates string ajbj .
Claim 2: For all j ≥ 0, if T generates a string x ∈ {a, b, c}∗ in j + 1 steps, then x = ajbj .
Now we know that the set of strings of terminals that can be generated from T is exactly

{ajcj : j ∈ IN}.

Stop reading here, and try to finish the proof. Further hints below.

Next, tackle what can be generated from S. Similar proofs by induction on k establish
the following claims:

Claim 3: For all k ≥ 0, S
∗

⇒ akTck.
Claim 4: For all i ≥ 0, if S generates a string x ∈ {a, b, c}∗ in i + 2 steps, then there

exists a j ≥ 0 such that x = aibjci−j .
From claims 1 and 3, we see that for all j and k, S can generate akajbjck = aibjck (where

i = j + k, or i − j = k).
From claim 4, we see that all strings generated by the grammar are of the form aibjck,

where i − j = k.

12. You could use a PDA that whose stack stores a representation of i − j − k + ℓ.
To design a CFG (which is probably trickier), notice that the constraint says i+ℓ = j+k.

Break the language into the union of two languages: the subset that has i ≥ j and the subset
that has i ≤ j.

13. It is.

14. It isn’t.

Decidable and Recognizable Languages

15. It’s probably easiest to use two tapes. Copy x to the second tape and try all possible starting
locations within y to see if you get a match.

16. To check if x ∈ L1 ∩L2, run the decision algorithm for testing whether x ∈ L1 and then run
the decision algorithm for testing whether x ∈ L2.

17. This one is a bit tricky. Here, I’ll give an algorithm that recognizes ETM . You can use a
similar idea to design an algorithm that recognizes L17.

Here is my algorithm to recognize ETM :

2 cont’d. . .

Recognize-ETM(〈M〉)
for i = 1..∞

for all strings x of length i

Simulate M for i steps on input x

If M accepts x during that time, accept
end for

end for
end Recognize-ETM

Let’s see why this algorithm recognizes ETM .
If 〈M〉 is in ETM , there is some string x that M accepts in k steps. When the algorithm

above reaches the iteration of the outer loop where i = max(|x|, k), it will accept 〈M〉.
(Note: technically, any input string that is not a syntactically correct description of a Turing
machine should also be accepted by the algorithm, since such strings are also in ETM .)

On the other hand, if 〈M〉 is not in ETM , that means L(M) = ∅. So, no matter how
big i is, we will never find a simulation of M on any input string that accepts. So the
algorithm above will never accept 〈M〉. (The algorithm will run forever, which is correct for
a recognizing algorithm.)

Now use these ideas to solve the question.

18. Show that if you could decide this language, you could decide ATM .

19. The answer to this question follows immediately from the answers to the previous two ques-
tions. (Take a look at your lecture notes from the last class.)

20. You can use an idea from the proof of Theorem 4.22 to answer this question.

21. It is decidable (and hence recognizable).

22. L22 is recognizable.

23. To show that L23 is recognizable, see the hint for question 19.

24. This is similar to the proof we did in class to prove that the integers are countable.

25.

(a) This question is a bit difficult. We can use an idea similar to the algorithm we studied
in class to check whether a string is generated by a grammar. Define a 3-dimensional
boolean array M such that M [i, j, k] is 1 if the first i characters of a can be spliced
together with the first j characters of b to obtain the first k characters of c, and 0
otherwise. Then describe how to fill in the array.

(b) Build a DFA for Splice(L1, L2), given DFAs for L1 and L2. The new DFA’s state
should be an ordered pair of states of the 2 original DFAs.

(c) The simplest decision algorithm is probably to use brute force: given an input string
c, try all possible strings a, b (of length at most |c|) and see if they can be used to
show c ∈ Splice(L1, L2). (This will require using the decision algorithms for L1 and
L2 and the answer to part (a).)

3

