Homework Assignment #1Due: September 24, 4:00 p.m.

Along with your solutions to this assignment, hand in a *separate* sheet of paper containing your name, student number and the following declaration: "I have read and understood the policy on academic honesty on the CSE2001 course web page." Sign this paper and date it. Without this declaration, your solutions will not be marked.

1. Let Σ be an alphabet. Given a string $x \in \Sigma^*$ define the reverse of x, denoted x^R , recursively as follows:

$$\varepsilon^R = \varepsilon$$
, and
 $(wa)^R = a(w^R)$, for $w \in \Sigma^*, a \in \Sigma$.

Define $A^R = \{x^R : x \in A\}$, where A is a language over the alphabet Σ .

Recall the recursive definition of string concatenation:

$$v\varepsilon = v$$
, for $v \in \Sigma^*$, and
 $v(wa) = (vw)a$, for $v, w \in \Sigma^*$ and $a \in \Sigma$.

Define $AB = \{vw : v \in A \text{ and } w \in B\}$, where A and B are languages over the alphabet Σ .

Let A and B be languages over the alphabet Σ . Use the above definitions to give careful proofs of the following statements.

(a) $\varepsilon x = x$ for all strings $x \in \Sigma^*$. (Hint: use induction.)

- (b) $(x^R)(y^R) = (yx)^R$ for all strings $x, y \in \Sigma^*$. (Hint: use induction on the length of x.)
- (c) $(AB)^R = (B^R)(A^R)$ for all languages $A, B \subseteq \Sigma^*$.