
1

CSE 1020 Introduction to Computer Science I

A sample �nal exam

1 (8 marks)

For each of the following pairs of objects, determine whether they are related by aggregation
or inheritance. Explain your answers.

(a) Circle and shape.

Inheritance, since a circle is-a shape.

(b) Circle and radius.

Aggregation, since a circle has-a radius.

(c) Creditcard and date.

Aggregation, since a creditcard has-an (expiry)date.

(d) Creditcard and rewardcard.

Inheritance, since a rewardcard is-a creditcard.

2 (8 marks)

Which interface from the collections framework (Set, List or Map) would be most appropriate
for representing each of the collections that are described below. Not only give your choice,
but also motivate your choice. Also, include the type parameters (for example, instead of
Set, give its parameterized version, like Set<String>).

(a) The creditcard numbers that have been issued by a creditcard company.

Set<Long>: a collection of Longs with no duplicates (each creditcard number is only
used once).

(b) The names of the people who are currently customers of a creditcard company.

List<String>: a collection of Strings with duplicates allowed (since different people
may have the same name).

(c) The creditcard numbers that have been issued by a creditcard company and, for each
issued creditcard number, the corresponding customer name.

Map<Long, String>: mapping each number to the corresponding name.



2

(d) The names of the customers of a creditcard company and, for each customer, the cred-
itcard numbers of the card(s) that the customer owns.

List<Map<String, Set<Long>>>: each element of the list maps the name of a cus-
tomer to the corresponding set of numbers (we need a list since we may have multiple
customers with the same name).

3 (6 marks)

Consider the following UML diagram.

Shape
{abstract}
getName() : String
getRandom() : Shape

↑
Circle
getName() : String
getRadius() : int

Consider the following code snippet (which appears in the body of a main method).

Shape shape = Shape.getRandom();

output.print("This shape is a " + shape.getName());

if (Shape instanceof Circle)

{

output.println(" and its radius is " + ((Circle) shape).getRadius());

}

(a) During early binding, to which method of which class is the method call shape.getName()
associated? Explain your answer.

The method getName of the class Shape, since the declared type of shape is Shape.

(b) During late binding, to which method of which class is the method call shape.getName()
associated? Explain your answer.

The method getName of the class Circle, since the actual type of shape has to be
Circle (it cannot be Shape because this class is abstract).

(c) During early binding, to which method of which class is the method call shape.getRadius()
associated? Explain your answer.

The method getRadius of the class Circle, since shape is casted to Circle.



3

4 (6 marks)

Consider the following UML diagram.

A
x : int
y : int
m(A) : String
m(B) : String
n(A) : int

↑
B
x : int
y : double
z : int
m(A) : String
n(A) : int

According to the above diagram, class B extends class A.

(a) How many fields are effectively present in class B? Explain your answer.

Three. Both fields of A are inherited but are shadowed.

(b) How many methods are effectively present in class B? Explain your answer.

Three: m(A), m(B) and n(A). m(A) and n(A) of A are overwritten. m(B) of A is
inherited.

5 (6 marks)

Consider the following code snippet (which appears in the body of a main method).

output.print("Enter a positive integer: ");

int size = input.nextInt();

List<Double> list = new LinkedList<Double>();

for (int i = 0; i < size; i++)

{

list.add(Math.random());

}

double sum = 0;

for (int i = 0; i < size; i++)

{



4

sum += list.get(i);

}

output.println("Average: " + sum / size);

In this fragment, the following methods may throw runtime exceptions.

method name exception type condition
nextInt InputMismatchException if the next token is not an integer
get IndexOutOfBoundsException if the index is out of range

Defensive programming and exception-based programming are two approaches to handle
these runtime exceptions. For each method that may throw a runtime exception, which
approach would be most appropriate? Explain your answers.

For nextInt, I would use an exception-based solution since it is simpler than checking if
the next token to be read represents an integer.

For get, defensive programming is already used: the loop only invokes the method for
valid indices.

6 (4 marks)

Consider the following APIs.

public class Safe

public Safe(Lock lock)

Construct a safe with the given lock.

Parameters:
lock – a lock for the safe.

public String toString()

Return a string representation of this safe. It consists of the string a safe with

followed by the string representation of the lock of this safe.

Returns:
a string representation of this safe.

public class Lock

public Lock(int combination)

Construct a lock with the given combination.

Parameters:



5

combination – a combination for the lock.

public void setCombination(int combination)

Set the combination of this lock to the given combination.

Parameters:
combination – the new combination for this lock.

public String toString()

Return a string representation of this lock. It consists of the string a lock with

combination followed by the combination of this lock.

Returns:
a string representation of this lock.

Describe how one can check if the aggregation of the classes Safe and Lock is a composition.
If the snippet

Lock lock = new Lock(0);

Safe safe = new Safe(lock);

lock.setCombination(1);

output.println(safe);

produces as output a safe with a lock with combination 0, then it is a composition.


