

[image: image1.png]) INTERSENSE





Developer’s Instructions

Introduction
This document describes the interface to be used by the application software to initialize and retrieve data from the InterSense devices using the ISENSE.DLL. This dynamic link library is provided to simplify communications with all models of InterSense tracking devices, including IS-300, IS-600, IS-900, InertiaCube2 and all versions of InterTrax.  It can detect, configure, and get data from up to 4 trackers. The DLL maintains compatibility with existing devices, and also makes the applications forward compatible with all future InterSense products.

Sample Program

The DLL is distributed with sample programs written in C and Visual Basic to demonstrate usage. It includes a header file with data structure definitions and function prototypes. Most of the API description below can also be obtained from the header file.

main.cpp
Main loop of the program. All API calls are made from here. 

isense.h
Header file containing function prototypes and definitions, some of which are only applicable to InterSense Professional Series devices and are not used with InterTrax. This file should not be modified.

isense.cpp

DLL import procedures. This file is included instead of an import library to provide compatibility with all compilers, not just the VC++ 6.0.

isense.dll
The InterSense DLL. This file should be placed in the Windows system directory, or in the working directory of the application.
Usage 

The API provides an extensive set of functions that can read and set tracker configuration, but in it’s simplest form can be limited to just 4 calls, as shown below:

void main()

{

    ISD_TRACKER_HANDLE      handle;

    ISD_TRACKER_INFO_TYPE   tracker;

    ISD_TRACKER_DATA_TYPE   data;

    handle = ISD_OpenTracker( NULL, 0, FALSE, FALSE ); 

    if(handle > 0)

        printf( "\n    Az      El      Rl      X       Y       Z \n" );

    else  

        printf( "Tracker not found. Press any key to exit" );

    while( !kbhit() )

    {

        if(handle > 0)

        {

            ISD_GetData( handle, &data );

            printf( "%7.2f %7.2f %7.2f %7.3f %7.3f %7.3f  ", 

                data.Station[0].Orientation[0], 

                data.Station[0].Orientation[1], 

                data.Station[0].Orientation[2],

                data.Station[0].Position[0], 

                data.Station[0].Position[1], 

                data.Station[0].Position[2] );

            ISD_GetCommInfo( handle, &tracker );

            printf( "%5.2fKbps %d Records/s \r", 

                tracker.KBitsPerSec, tracker.RecordsPerSec );

        }

        Sleep( 6 );

    }

    ISD_CloseTracker( handle );

}

API

ISD_TRACKER_HANDLE

ISD_OpenTracker(
HWND hParent, 


DWORD commPort, 


Bool infoScreen, 


Bool verbose )
hParent
Handle to the parent window. This parameter is optional and should only be used if information screen or tracker configuration tools are to be used when available in the future releases. All included sample programs pass NULL.
commPort 
If this parameter is a number other than 0, program will try to locate an InterSense tracker on the specified RS232 port. Otherwise it looks for USB device, then for serial port device on all ports at all baud rates. Most applications should pass 0 for maximum flexibility. If you have more than one InterSense device and would like to have a specific tracker, connected to a known port, initialized first, then enter the port number instead of 0.
infoScreen
This feature has not been implemented. Its purpose is to display an information window to show the tracker detection progress and results. Currently DLL writes only to Windows console. Most applications should pass False.
verbose
Pass True if you would like a more detailed report of the DLL activity. Messages are printed to Windows console.
Bool  

ISD_CloseTracker( ISD_TRACKER_HANDLE handle )
This function call de-initializes the tracker, closes communications port and frees the resources associated with this tracker. If 0 is passed, all currently open trackers are closed. When last tracker is closed, program frees the DLL. Returns FALSE if failed for any reason.

handle
Handle to the tracking device. This is the handle returned by ISD_OpenTracker. 

Bool  

ISD_GetTrackerConfig( ISD_TRACKER_HANDLE handle,

    ISD_TRACKER_INFO_TYPE *tracker, 

    Bool verbose )
Get general tracker information, such as type, model, port, etc. Also retrieves genlock synchronization configuration, if available.  See ISD_TRACKER_INFO_TYPE structure definition for complete list of items.

handle
Handle to the tracking device. This is the handle returned by ISD_OpenTracker. 

tracker
Pointer to a structure of type ISD_TRACKER_INFO_TYPE. See isense.h for structure definition.
Bool  

ISD_SetTrackerConfig( ISD_TRACKER_HANDLE handle,

  


    ISD_TRACKER_INFO_TYPE *tracker, 

    Bool verbose )
When used with IS Precision Series (IS-300, IS-600, IS-900) tracking devices this function call will set genlock synchronization parameters, all other fields in the ISD_TRACKER_INFO_TYPE structure are for information purposes only.

handle
Handle to the tracking device. This is the handle returned by ISD_OpenTracker. 

tracker
Pointer to a structure of type ISD_TRACKER_INFO_TYPE. See isense.h for structure definition.

Bool  

ISD_GetCommInfo( ISD_TRACKER_HANDLE handle,

     ISD_TRACKER_INFO_TYPE *tracker)
Get RecordsPerSec and KBitsPerSec without requesting genlock settings from the tracker. Use this instead of ISD_GetTrackerConfig to prevent your program from stalling while waiting for the tracker response. This call is used to obtain data rate information.

handle
Handle to the tracking device. This is the handle returned by ISD_OpenTracker. 

tracker
Pointer to a structure of type ISD_TRACKER_INFO_TYPE. See isense.h for structure definition.

Bool  

ISD_SetStationConfig( ISD_TRACKER_HANDLE handle,

    ISD_STATION_INFO_TYPE *station, 

    WORD stationID, 

    Bool verbose )
Configure station as specified in the ISD_STATION_INFO_TYPE structure. Before this function is called, all elements of the structure must be assigned valid values.  General procedure for changing any setting is to first retrieve current configuration, make the change, and then apply them. Calling ISD_GetStationConfig is important because you only want to change some of the settings, leaving the rest unchanged.
This function is ignored if used with InterTrax30 and InterTrax2 products. InterTraxLC and InertiaCube2 only allow the Compass field to be changed.

handle
Handle to the tracking device. This is the handle returned by ISD_OpenTracker. 

station
Pointer to a structure of type ISD_STATION_INFO_TYPE. See isense.h for structure definition.

StationID
Number from 1 to ISD_MAX_STATIONS.
Bool

ISD_GetStationConfig( ISD_TRACKER_HANDLE handle,

 


    ISD_STATION_INFO_TYPE *station, 

          WORD stationID, 

    Bool verbose )

Fills the ISD_STATION_INFO_TYPE structure with current settings. Function requests configuration records from the tracker and waits for the response. If communications are interrupted, it will stall for several seconds while attempting to recover the settings. 

handle
Handle to the tracking device. This is the handle returned by ISD_OpenTracker. 

station
Pointer to a structure of type ISD_STATION_INFO_TYPE. See isense.h for structure definition.

StationID
Number from 1 to ISD_MAX_STATIONS.
Bool

ISD_GetData( ISD_TRACKER_HANDLE handle,

 ISD_TRACKER_DATA_TYPE *data )
Get data from all configured stations. Data is places in the ISD_TRACKER_DATA_TYPE structure. Orientation array may contain Euler angles or Quaternions, depending on the settings of the AngleFormat field of the ISD_STATION_INFO_TYPE structure. TimeStamp is only available if requested by setting TimeStamped field to TRUE. Returns FALSE if failed for any reason.

handle
Handle to the tracking device. This is the handle returned by ISD_OpenTracker. 

data
Pointer to a structure of type ISD_TRACKER_DATA_TYPE. See isense.h for structure definition. The structure is designed to accommodate InterSense Professional Series devices that support multiple sensors. In the case of the InterTrax series trackers, the only data available is Euler angles in the first element of the Station array. Orientation data order is Yaw, Pitch, Roll.

Bool  

ISD_GetCameraData( ISD_TRACKER_HANDLE handle,

 ISD_CAMERA_DATA_TYPE *Data )

Get camera encode and other data for all configured stations. Data is places in the ISD_CAMERA_DATA_TYPE structure. This function does not service serial port, so ISD_GetTrackerData must be called prior to this.

Should only be used with IS Precision Series tracking devices, not valid and will be ignored if used with InterTrax.

handle
Handle to the tracking device. This is the handle returned by ISD_OpenTracker. 

data
Pointer to a structure of ISD_CAMERA_DATA_TYPE. See isense.h for structure definition. 

Bool

ISD_SendScript( ISD_TRACKER_HANDLE handle, 

    char *command )

Send a configuration script to the tracker. Script must consist of valid commands as described in the interface protocol. Commands in the script should be terminated by the New Line character '\n'. Line Feed character '\r' is added by the function and is not required.

Should only be used with IS Precision Series tracking devices, except InertiaCube2, not valid and will be ignored if used with InterTrax.

handle
Handle to the tracking device. This is the handle returned by ISD_OpenTracker. 

command
Pointer to a string containing the command script.
Bool  

ISD_NumOpenTrackers( WORD *count )

Number of currently opened trackers is stored in the parameter passed to this function.
Bool 

ISD_BoresightReferenced( ISD_TRACKER_HANDLE handle, 

                         WORD stationID, 

                         float yaw, 

                         float pitch, 

                         float roll )

Boresight station using specific reference angles. This is useful when you need to apply a specific offset to system output. For example, if a sensor is mounted at 40 degrees relative to the HMD, you can enter 0, 40, 0 to get the system to output zero when HMD is horizontal.

handle
Handle to the tracking device. This is the handle returned by ISD_OpenTracker. 

command
Pointer to a string containing the command script.
stationID
Number from 1 to ISD_MAX_STATIONS.

yaw, pitch, roll


Boresight reference angles.

Bool 

ISD_Boresight ( ISD_TRACKER_HANDLE handle, 

                WORD stationID, 

                Bool set ) 

Boresight, or unboresight a station. If 'set' is TRUE, all angles are reset to zero. Otherwise, all boresight settings are cleared, including those set by ISD_ResetHeading and ISD_BoresightReferenced
handle
Handle to the tracking device. This is the handle returned by ISD_OpenTracker. 

stationID
Number from 1 to ISD_MAX_STATIONS.

set
TRUE or FALSE, to set to clear boresight.
Bool  

ISD_ResetHeading( ISD_TRACKER_HANDLE handle,

WORD stationID )
Reset heading to zero.

handle
Handle to the tracking device. This is the handle returned by ISD_OpenTracker. 

stationID
Number from 1 to ISD_MAX_STATIONS.

DATA STRUCTURES

ISD_TRACKER_INFO_TYPE 

typedef struct 

{ 

    float  LibVersion;     

    DWORD  TrackerType;    

    DWORD  TrackerModel;    

    DWORD  Port;           

    DWORD  RecordsPerSec;  

    float  KBitsPerSec;    

    DWORD  SyncState;      

    float  SyncRate;       

    DWORD  SyncPhase;      

    DWORD  Interface;      

    DWORD  dwReserved2;    

    DWORD  dwReserved3;  

    DWORD  dwReserved4;

    float  fReserved1;  

    float  fReserved2;

    float  fReserved3;

    float  fReserved4;

    Bool   bReserved1;

    Bool   bReserved2;

    Bool   bReserved3;

    Bool   bReserved4;

} ISD_TRACKER_INFO_TYPE; 

LibVersion
InterSense Library version. 

TrackerType
One of the values defined in ISD_SYSTEM_TYPE
TrackerModel
One of the values defined in ISD_SYSTEM_MODEL
Port
Number of the hardware port the tracker is connected to. Starts with 1. 

RecordsPerSec
Communications statistics. 

KBitsPerSec
Communications statistics. 

SyncState
Applies to IS-X Series devices only. Can be one of 4 values: 

0 - OFF, system is in free run 

1 - ON, hardware genlock frequency is automatically determined

2 - ON, hardware genlock frequency is specified by the user

3 - ON, no hardware signal, lock to the user specified frequency  

SyncRate
Sync frequency - number of hardware sync signals per second, or, if SyncState is 3 - data record output frequency.

SyncPhase

The time within the sync period at which a data record is transmitted. The phase point is specified as a percentage of the sync period. 0% (the default) instructs the tracker to output a data record as soon as possible after the sync period begins. 100% delays the output of a record as much as possible before the next sync period begins. 

Interface
Hardware interface type, as defined in ISD_INTERFACE_TYPE.
ISD_STATION_INFO_TYPE 

This data structure is used to get and set station configuration.

typedef struct

{

    DWORD   ID;             

    Bool    State;

    Bool    Compass;      

    LONG    InertiaCube;

    DWORD   Enhancement;    

    DWORD   Sensitivity;    

    DWORD   Prediction;     

    DWORD   AngleFormat;       

    Bool    TimeStamped;    

    Bool    GetButtons;     

    Bool    GetEncoderData; 

    Bool    GetAnalogData;  

    DWORD   CoordFrame;     

    DWORD   AccelSensitivity;    

    DWORD   dwReserved3;     

    DWORD   dwReserved4;

    float   fReserved1;  

    float   fReserved2;

    float   fReserved3;

    float   fReserved4;

    Bool    GetCameraData;

    Bool    bReserved2;     

    Bool    bReserved3;

    Bool    bReserved4;

} ISD_STATION_INFO_TYPE;

ID
A unique number identifying a station. It is the same as that passed to the ISD_SetStationState and ISD_GetStationState  functions and can be 1 to ISD_MAX_STATIONS. 

State

TRUE if on, FALSE if off

Compass

Only available for IS-X Series devices and InertiaCube2 Pro. For all others this setting is always 2. This controls the state of the compass component of the InertiaCube. Compass is only used when station is configured for GEOS or Dual modes, in Fusion mode compass readings are not used, regardless of this setting.  When station is configured for FULL compass mode, the readings produced by the magnetometers inside the InertiaCube are used as absolute reference orientation for yaw. Compass can be affected by metallic objects and electronic equipment in close proximity to the InertiaCube. When station is configured for PARTIAL compass mode, magnetometer readings are used to reduce drift and maintain stability, but not as an absolute measurement system. In this mode system is much less susceptible to magnetic interference, but heading drift will accumulate. If compass is OFF, no heading compensation is applied. Older versions of tracker firmware supported only 0 and 1, which stood for ON or OFF. Please use the new notation. This API will correctly interpret the settings.

InertiaCube

InertiaCube associated with this station. If no InertiaCube is assigned, this number is -1. Otherwise, it is a positive number 1 to 4. Only relevant for IS-300 and IS-600 Series devices. For IS-900 it is always the same as the station number, for InterTrax and InertiaCube2 it’s always 1.

Enhancement

In order to provide the best performance for a large range of various applications, three levels of perceptual enhancement are available. None of the modes introduces any additional latency. InterTrax and InertiaCube2 (not the Pro) are restricted to Mode 2.

Mode 0 provides the best accuracy. The inertial tracker uses gyros to measure angular rotation rates for computing the sensor’s orientation. To compensate for the gyroscopic drift, depending on the configuration, the tracker may use accelerometers, magnetometers or SoniDiscs to measure the actual physical orientation of the sensor. That data is then used to compute the necessary correction. In Mode 0 correction adjustments are made immediately, no jitter reduction algorithms are used. This results in somewhat jumpy output (not recommended for head tracking) but with lower RMS error. Use this mode for accuracy testing or for any application that requires best accuracy. 

Mode 1 provides accuracy similar to that of mode 0, with an addition of a jitter reduction algorithm. This algorithm reduces the accuracy by only a small amount and does not add any latency to the measurements. 

Mode 2 is recommended for use with HMD or other immersive applications. The drift correction adjustments are made smoothly and only while the sensor is moving, so as to be transparent to the user.
Mode 3 is only available with InertiaCube2 Pro. It is designed to prevent magnetic interference from effecting yaw accuracy during short data acquisition periods. This mode operates like Mode 2, except with no drift correction for Yaw, so that exported Yaw values are produced by integrating gyro data only. This mode should not be used for durations longer that 30 seconds to prevent excessive error accumulation. After that period has expired, you must switch to one of the other modes to synchronize the exported values with internal estimates. Please note that Compass remains on, and is used to internally maintain the best estimates for yaw, pitch and roll.

Sensitivity

This setting is only used when Perceptual Enhancement Level is set to 2. It controls the minimum angular rotation rate picked up by the InertiaCube. Default is level 3. Increasing sensitivity does not increase latency during normal movements. It may, however, result in some small residual movements for a couple of seconds after the sensor has stopped. If your application requires sensitivity greater than maximum provided by this control, you must use Perceptual Enhancement level 0 or 1 instead. For InterTrax and InertiaCube2 devices this value is fixed to default and can’t be changed.

Prediction

InterSense tracker models IS-300 Pro and higher can predict motion up to 50 ms into the future, which compensates for graphics rendering delays and further contributes to eliminating simulator lag. This feature is only available for stations configured with an InertiaCube. Not available on InterTrax and InertiaCube2.
AngleFormat

ISD_EULER or ISD_QUATERNION.The Euler angles are defined as rotations about Z, then Y, then X in body frame. Angles are returned in degrees. Default is ISD_EULER.
TimeStamped

TRUE if time stamp is requested, default is FALSE.
GetButtons

TRUE if wand or stylus button state is requested, default is FALSE.
GetEncoderData

TRUE if raw encoder data is requested, default is FALSE.
GetAnalogData

TRUE if analog joystick data is requested, default is FALSE.
CoordFrame

Coordinate frame in which position and orientation data is reported. Can be ISD_DEFAULT_FRAME or ISD_VSET_FRAME. Second is used for camera tracker only. Defaults is ISD_DEFAULT_FRAME.
AccelSensitivity

This parameter is used for 3-DOF tracking with InertiaCube2 only. It controls how fast tilt correction, using accelerometers, is applied. Valid values are 1 to 4, with 2 as default. 

Default is best for head tracking in static environment, with user sited. 

Level 1 reduces the amount of tilt correction during movement. While it will prevent any effect linear accelerations may have on pitch and roll, it will also reduce stability and dynamic accuracy. 

It should only be used in situations when sensor is not expected to experience a lot of movement.

Level 3 allows for more aggressive tilt compensation, appropriate when sensor is moved a lot, for example, when user is walking for long durations of time. 

Level 4 allows for even greater tilt corrections. It will reduce orientation accuracy by allowing linear accelerations to effect orientation, but increase stability. This level is appropriate for when user is running, or in other situations when sensor experiences a great deal of movement. 

AccelSensitivity is an advanced tuning parameter and is not used in the configuration files. 

The only way to set it is through the ISD_GetStationConfig function call, otherwise it will remain at default.

GetCameraData

TRUE to get computed FOV, aperature, etc. default is FALSE.

ISD_STATION_STATE_TYPE 

This data structure is used to return current data for a station, including position, orientation, time stamp, button and analog channel state. It is passed to ISD_GetData as part of ISD_TRACKER_DATA_TYPE

typedef struct

{

    ISD_STATION_STATE_TYPE Station[ISD_MAX_STATIONS];

} ISD_TRACKER_DATA_TYPE;

typedef struct

{

    BYTE    TrackingStatus;

    BYTE    NewData;          

    BYTE    bReserved2;

    BYTE    bReserved3;

    float   Orientation[4];

    float   Position[3];

    float   TimeStamp;    

    Bool    ButtonState[MAX_NUM_BUTTONS];

    short   AnalogData[MAX_ANALOG_CHANNELS];

    LONG    lReserved1;

    LONG    lReserved2;

    LONG    lReserved3;

    LONG    lReserved4;

    DWORD   dwReserved1;

    DWORD   dwReserved2;

    DWORD   dwReserved3;

    DWORD   dwReserved4;

    float   fReserved1;

    float   fReserved2;

    float   fReserved3;

    float   fReserved4;

} ISD_STATION_STATE_TYPE;

TrackingStatus
Tracking status byte. Not implemented.

NewData
TRUE if this is new data. Every time ISD_GetData is called this flag is reset.
Orientation
Orientation in Euler or Quaternion form, depending on the setting of AngleFormat in ISD_STATION_INFO_TYPE structure. Euler angles are returned in degrees.

Position
Station position in meters.

TimeStamp
Only if requested, in seconds.

ButtonState
Only if requested.

AnalogData
Only if requested. Current hardware is limited to 10 channels, only 2 are used. The only device using this is the IS-900 wand that has a built-in analog joystick. Channel 1 is x-axis rotation, channel 2 is y-axis rotation. Values are from 0 to 255, with 127 representing the center.





















13

[image: image1.png]