CHAPTER 3

I ntroduction to Statistical Estimation

1. TheSmplest Kind of Statistics

Least Squares is the simplest and most intuitind of statistics and often the most
useful. The most straightfoesd application is as follows. 8\havea st of quantities that
we would like to be ero or as close to zero as possible ang iedepend on a set of
unknavns. W take the squares of all these quantities, sum them up and then minimize
this sum with respect to the unknowns. There areyrali@rnatives to least squares that
sometimes hze interesting properties (most notably robustness to outliars)east
squares is not only the simplest but is also the basis for most of the alestnati

2. Point in theMiddle

Consider the following very simple problemeWant to find a poinP and all we
have is a £t of seeral approximations oP which we callP;, i =1..N. If of course all
the P;s ae identical the choice is eagitherwise we would li& P to be as close to all of
them as possible. &form the sum of the squared differences

Q(P) = 3(P, - P
i=1

The standard way to minimiZ@ is to tale its dervatives with respect to the unkmms

and equate them to zero. Solving these equations wil g8 P, the vector of the
unknavns. In this very simple problem solving the equations is, dagytaking the
derivatives is dightly more complg. We examine tw ways to tak these dewatives.

One is scalar (element by element) datives and the other is vector deatives.

2.1. Scalar Derivatives

Our unknowns are the elements of the veBtor
0P O
Op., O
gk
00
Pk O

and our data are the vectdts
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So
N K ,
Q(P) =2 2.(pij — pj)
i=1j=1
and
QP)_$§ 9 =
0 px igljglapk(p” Pi)
N K ap, N K
‘Zzza—(pij‘pj):‘zzz5jk(pij‘pj)
i=1j=1 Px i=1j=1

whereg;; is the Kronecker delta, e.g; =0 iff i # j andg; =1 which of course mads
perfect sense: the degtive d an unknowvn with respect to itself is equal to one and the
derivative d an unknown with respect to a ddrent unknown is zero. The delta affords us
some simplifications, so

0Q(P) S
=2 =
Ty El( Pik = Px)
which if we equate to zero we get
N
_Zl Pik
— 1=
Pk = N

e.g. &ery element of the unknown vector is theeage of the corresponding elements of
the data.

2.2. Vector Derivatives

A more compact and mainly more g#at way of doing the same thing is taking
vector dervatives. Most of the rules of scalar detives gply, some with a small quirk.
Let's dart.

The notation

oQ(P)
oP

indicates a vector whose elements are the scalaratiees d Q(P) with respect to the
corresponding element &f (remembelQ is a scalar). Sometimes the “grad” notation is
used to indicate the same thing
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0Q(P)

—p = 0eQ(P)
where the subscrif® is the \ector with respect to which the dedtives ae taken. If it is
obvious what this vector is (in mgphysics problems it is alays the position vector) it

is omitted. So

0QAP) _ Ly o
)= L EP-PR=2 LR~ PY(R - P) -

z (P P)TSP P)——ZZ—PTSP P)

where the devitive d P; is zero, because it is constafthe dervative o a row vector

with with respect to a columregtor is a matrix. Every voof this matrix is the devative

of the rav vector with the corresponding element of the coluraatar In our case the
derivative d P with respect to itself is the identity matfixSo

0Q(P) —221(P P) = ZZ(P P)
oP =
which if we equate to zero we get
N
P;
.. 2 2.1)
N

which is essentially the same as before.

3. LineFitting

In the problem abee we had a collection of point®; and we found a poinP that is
closest to all of them, in the least squares senseawtry something slightly more com-
plex now, like finding a linel that is closest to all poin;. Let linel be represented by
two vectors

I'=(p,0)

where a poinP; belongs td iff there is a1 such thatp+ Aq = P;. Vector p is a point on
the line and gctorq is the direction of the line. There are othexyw to represent a line
but this one suits our purpose better.

Since we want to minimize the distance of the pdhtdom the linel we first need
to express this distance as a nice and easy to use expression. Theie epavalent
ways to define the point to line distance. The one is to define a normal line that goes
through the point and intersects the lirag a right angle and then measure the distance of
the point from the liné along the normal line. The second way is to find the distance of
the pointP; from a pointP’; that lies on the liné and then slide the poift; along the
line | till this distance is minimized. This minimal distance is the one we want. Since we
have the machinery to minimize things we opt for the second approach. If weuaha
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hammer eerything looks lile a rail.
So the (squared) distanE¥ of the pointP; from the linel is

D = min(P; - p - Aq)?
but if we want to do anything useful with it weeat get rid of the min symbol by find-
ing the minimizing with respect tb. As before we tak derivatives
(P - p-Aq)®

5 =-2q'(Pi - p-A0)
and by equating it to zero we get
,= 9 (Pi-p)
q'q

which gwves us he expression for distance
2
D= {Pi=P) - 7 ( P
which, striving for elgance we rewrite as
T 2
Df = 1= r P - P (3.1)
Now we havean expression for the distance of a pétpfrom the linel and it is already

squared. @ proceed with our least squares we sum up all these squared distances and find
the line parameterg andq that minimize this sum. ¥4art by defining the sum

qﬂm=%D?

and we tak the demvatives first with respect t@

0Q(p,q) _NoD? _ _Nop'  qu' .. qqd',_ . _

ap Zl ap - éa—(l q)(l ﬁ)(Pi p) =

N T
-2 _z(l )(1 9o =

1=1 q

qq’ qq’
_2 —
@ a'q q)(1 q) IZ(P

which we can equate to zeroe\Wan verify that

N
2P (3.2)

PTN
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satisfies the resulting equation, although it is not a unique solution. giegast a point
on the line it is as good asyaother point on the line. But we prefer the oneegiby K.
(3.2) because it is identical to the oneegiby Ej. (2.1) and does not contain

On toq now. It appears that Eqg. (3.1) is not géat enough and we should impe
it. Consider the following well known identities for a vector

v=vy=viv=tr(w")

wheretr (--+) is the trace operator (sum of diagonal elementdg ae mainly interested
in the last version to apply it to Eqg. (3.1) which becomes

L R« L e o I« L
Qp.@) =3 1A= AP - P - )T - e

and by noticing that the trace operator is linear and that the first and last parenthesized
guantities do not depend on the indexe can rewrite it as

)
Q. =0 F- 905 - e - D5 - ;‘ﬂq%

N %-%% i e e
where

Z(P PP - p)’
C = i=1 N

and we applied the folaing property of the trace for twmatricesA and B of appropri-
ate dimensions

tr (AB) = tr(BA)
Then noticing that the product
3- 99" _ a9’ O_
q'q qrqC
,a'aqa’ _aq’ _qa’ _
a'qq'd 9'q d'q
_'o
qrqQ

.
m
Q(p,q)=N tr% -%m

and by ivoking the abwe property of the trace we get
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m'Can

3.3
S @ o (3.3)

Q(p,q) =Ntr(C)-Ntr

which is undoubtedly the most gbat of equations.

Matrix C is a constant so it does nofexft the minimization which can be ackad
by maximizing the scalar

q'Cq
q2
which is just a Rayleigh Quotient and is maximized whés the eigewector that corre-
sponds to the largest eigaiue.

There are a f@ remarks that we can malon tis result. First, we find the line
direction g without taking dewatives, just by using a canned theorem (we, in other
words, outsourced the destives to Dr. Rayleigh). Second the poini can be of an
dimension: tw dimensional points on the image plane, three dimensional points in the
real world or ten dimensional characters in a Douglas Adang. richird we can gtend
the result to structures of higher dimensions than lines, fliktng a plane in a four
dimensional space, as we might need if we fit ineaflov to a £t of image displace-
ment data. And finallythe same technique can be applied to find the principal direction
of ary elongated object,ven if we are not particularly interested in line fitting.
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