
Automated GUI Testing

How to test an interactive
application automatically

AGUI–2

Some GUI facts

 Software testing accounts for 50-60% of total software
development costs

 GUIs can constitute as much as 60% of the code of an
application

 GUI development frameworks such as Swing make GUI
development easier

 Unfortunately, they make GUI testing much more difficult

AGUI–3

Why is GUI testing difficult?

 Event-driven architecture
 User actions create events
 An automatic test suite has to simulate these events

somehow

 Large space of possibilities
 The user may click on any pixel on the screen
 Even the simplest components have a large number of

attributes and methods
 JButton has more than 50 attributes and 200 methods

 The state of the GUI is a combination of the states of all of
its components

AGUI–4

Challenges of GUI testing

 Test case generation
 What combinations of user actions to try?

 Oracles
 What is the expected GUI behaviour?

 Coverage
 How much testing is enough?

 Regression testing
 Can test cases from an earlier version be re-used?

 Representation
 How to represent the GUI to handle all the above?

AGUI–5

A GUI test case

1. Select text “Some”
2. Menu “Format”
3. Option “Font”

AGUI–6

A GUI test case

4. Combobox “Size”
5. Click on 26
6. Click OK

AGUI–7

A GUI test case

7. Select “text”
8. Click U
9. Verify that the
 output looks
 like this

AGUI–8

GUI vs. business model testing

 GUI testing
 The look of the text in the editor window corresponds to the

operations performed
 The U button is selected
 All appropriate actions are still enabled

 i.e. we can italicize the underlined text

 Business model testing
 Word’s internal model reflects the text formatting we

performed

AGUI–9

Two approaches to GUI testing

 Black Box
 Glass Box

AGUI–10

Black box GUI testing

 Launch application
 Simulate mouse and keyboard events
 Compare final look to an existing screen dump

 Very brittle test cases
 Cannot test business model
 Framework independent

AGUI–11

Glass box GUI testing

 Launch application in the testing code
 Obtain references to the various components and send

events to them
 Assert the state of components directly

 Test cases more difficult to break
 Business model can be tested
 Framework dependent

AGUI–12

A first approach

 The Java API provides a class called java.awt.Robot
 It can be used to generate native system input events

 Different than creating Event objects and adding them to
the AWT event queue

 These events will indeed move the mouse, click, etc.

AGUI–13

RobotDemo

AGUI–14

Testing with Robot

 User input can be simulated by the robot
 How to evaluate that the correct GUI behaviour has taken

place?
 Robot includes method

public BufferedImage
createScreenCapture (Rectangle screenRect)

 Creates an image containing pixels read from the screen

AGUI–15

Problems with this approach

 Low-level
 Would rather say “Select "blue" from the colour list” than

Move to the colour list co-ordinates
Click
Press ↓ 5 times
Click

 Brittle test cases (regression impossible)

AGUI–16

A better approach

 Every GUI component should provide a public API which can
be invoked in the same manner via a system user event or
programmatically
 Principle of reciprocity

 Component behaviour should be separated from event
handling code

 For example, class JButton contains the doClick() method

AGUI–17

Unfortunately…

 Most GUI development frameworks are not designed in this
fashion

 In Swing, event handling is mixed with complex component
behaviour in the Look and Feel code

 Few components offer methods such as doClick()

AGUI–18

Abbot – A Better ’Bot

 A GUI testing framework for Swing
 Works seamlessly with Junit

 Uses some Junit 3 features

 Can be used to create
 Unit tests for GUI components
 Functional tests for existing GUI apps

 Open source
 http://abbot.sourceforge.net/

AGUI–19

Goals of the Abbot framework

 Reliable reproduction of user input
 High-level semantic actions
 Scripted control of actions
 Loose component bindings

AGUI–20

Abbot overview

 A better Robot class is provided
 abbot.tester.Robot includes events to click, drag, type on

any component

 For each Swing widget a corresponding Tester class is
provided
 E.g. JPopupMenuTester provides a method called

getMenuLabels()

 Components can be retrieved from the component hierarchy
 No direct reference to any widget is necessary

AGUI–21

A typical test case

JButton button = (JButton)getFinder().find(
 new Matcher() {
 public boolean matches(Component c) {
 return c instanceof JButton &&
 ((JButton)c).getText().equals("OK");
 }});
AbstractButtonTester tester =
 new AbstractButtonTester();
Tester.actionClick(button);
assertEquals("Wrong button tooltip",
 "Click to accept", button.getToolTipText());

AGUI–22

Testing with Abbot demo

AGUI–23

JUnit 3 features

 Abbot requires JUnit 3
 Only the differences between JUnit 3 and JUnit 4 are

presented in the next slides
 The JUnit 3 jar file is included in the abbot distribution

AGUI–24

Extending TestCase

 Each test class needs to extend class junit.framework.TestCase

public class SomeClassTest
 extends junit.framework.TestCase {

…
}

AGUI–25

Naming vs. Annotations

 protected void setUp()
 The @Before method must have this signature

 protected void tearDown()
 The @After method must have this signature

 public void testAdd()
public void testToString()
 All @Test methods must have names that start with test

 Do not include any annotations

AGUI–26

Test suite creation

 Creating a test suite with JUnit 3 is also different
 Use the code in the next slide as a template

AGUI–27

Test suite creation template

import junit.framework.*;

public class AllTests {

 public static void main(String[] args) {
 junit.swingui.TestRunner.run(AllTests.class);
 }

 public static Test suite() {
 TestSuite suite = new TestSuite(”Name");
 suite.addTestSuite(TestClass1.class);
 suite.addTestSuite(TestClass2.class);
 return suite;
 }
}

