
OO Integration Testing

Chapter 18



IOO–2

Questions

 What assumption is made for integration testing?
 How does OO unit definition alter integration testing?
 What choices do we have with integration testing?
 What information is needed for integration testing?



IOO–3

Overview

 Assume unit level testing is complete
 For OO have two choices for unit

 For method is a unit
 Need to integrate within the class

 Does occur with classes that have multiple designers /
implementers

 Need to integrate classes
 For class is a unit

 Need to unflatten classes
 Need to remove test methods



IOO–4

Overview – 2

 Static and dynamic choices
 Address polymorphism statically

 Test for each polymorphic context

 Dynamic view is more challenging



IOO–5

Information environment

 Class definitions
 Source text

 Static model
 Inheritances & uses structure

 Dynamic model
 Use cases
 Finite state machines – Petri nets
 Class communication – message passing
 Statecharts are not useful



IOO–6

Class communication

 Collaboration diagrams
 Annotated call graph – Figure 18.1

 Sequence diagrams
 Finite state machines with time axis – Figure 18.2

 States
 Classes – regular grain
 Methods – fine grain

 Transitions are messages sending
 Close analogy with MM-paths



IOO–7

Integration types

 Pair-wise
 Too much extra work with stubs and drivers

 Neighbourhood
 Using collaboration diagrams can cause problems

 Some neighbourhoods may be include most classes
 Some neighbourhoods may be only two classes
 Need better definition

 Centers of a graph
 Minimize maximum distance to other nodes

 Analogy with ripples from dropping something in water
 Neighbourhood grows from center

 Less stubs
 Less diagnostic precision



IOO–8

MM-paths

 MM-path in OO
 A sequence of method executions linked by messages

 Start at any class
 End at message quiescence

 At class that does not send any messages
 Largest integration level

 Classes implement atomic system function
 Stimulus / response pair of port-level events



IOO–9

Atomic System Function

 An MM-path
 Begins with an input port event
 Ends with an output port event

 Begin and end at event quiescence
 Addresses event-driven nature of OO programs
 At the boundary of integration and system testing



IOO–10

Data flow testing

 MM-paths, like DD-paths, are insufficient
 Data values add complexity

 Come from inheritance
 Come from stages of message passing

 Program graphs are basis but are too simple
 Need event and message driven Petri nets



IOO–11

Event & Message driven Petri nets (EMDPN)

 P – set of port events

 D – set of data places

 M – set of message places
 Output for sender
 Input for receiver

 T – set of transitions



IOO–12

EMDPN – 2

 In – set of edges to transitions
 (P ∪ D ∪ M) ↔ T

 It is a relation between places and transitions
 If deterministic then it is a function from places to

transitions

 Out – set of edges from transitions
 T ↔ (P ∪ D ∪ M)

 Define / use paths (du-paths)
 Focus on connectivity
 Ignore types of nodes



IOO–13

Inheritance-induced data flow

 Begins with a data place
 Ends with a data place
 Data places alternate with isA transitions

 isA transitions are degenerate execution paths
 Implement inheritance

See Figure 18.8



IOO–14

Message-induced data flow

 Set of transitions
 Start with defining transition
 End with use transition

 Can be definition clear or not definition clear

See Figure 18.9



IOO–15

Slices

 Useful if executable
 Difficult to do in OO environment

 Can be used for desk checking for fault location


