
OO Integration Testing

Chapter 18



IOO–2

Questions

 What assumption is made for integration testing?
 How does OO unit definition alter integration testing?
 What choices do we have with integration testing?
 What information is needed for integration testing?



IOO–3

Overview

 Assume unit level testing is complete
 For OO have two choices for unit

 For method is a unit
 Need to integrate within the class

 Does occur with classes that have multiple designers /
implementers

 Need to integrate classes
 For class is a unit

 Need to unflatten classes
 Need to remove test methods



IOO–4

Overview – 2

 Static and dynamic choices
 Address polymorphism statically

 Test for each polymorphic context

 Dynamic view is more challenging



IOO–5

Information environment

 Class definitions
 Source text

 Static model
 Inheritances & uses structure

 Dynamic model
 Use cases
 Finite state machines – Petri nets
 Class communication – message passing
 Statecharts are not useful



IOO–6

Class communication

 Collaboration diagrams
 Annotated call graph – Figure 18.1

 Sequence diagrams
 Finite state machines with time axis – Figure 18.2

 States
 Classes – regular grain
 Methods – fine grain

 Transitions are messages sending
 Close analogy with MM-paths



IOO–7

Integration types

 Pair-wise
 Too much extra work with stubs and drivers

 Neighbourhood
 Using collaboration diagrams can cause problems

 Some neighbourhoods may be include most classes
 Some neighbourhoods may be only two classes
 Need better definition

 Centers of a graph
 Minimize maximum distance to other nodes

 Analogy with ripples from dropping something in water
 Neighbourhood grows from center

 Less stubs
 Less diagnostic precision



IOO–8

MM-paths

 MM-path in OO
 A sequence of method executions linked by messages

 Start at any class
 End at message quiescence

 At class that does not send any messages
 Largest integration level

 Classes implement atomic system function
 Stimulus / response pair of port-level events



IOO–9

Atomic System Function

 An MM-path
 Begins with an input port event
 Ends with an output port event

 Begin and end at event quiescence
 Addresses event-driven nature of OO programs
 At the boundary of integration and system testing



IOO–10

Data flow testing

 MM-paths, like DD-paths, are insufficient
 Data values add complexity

 Come from inheritance
 Come from stages of message passing

 Program graphs are basis but are too simple
 Need event and message driven Petri nets



IOO–11

Event & Message driven Petri nets (EMDPN)

 P – set of port events

 D – set of data places

 M – set of message places
 Output for sender
 Input for receiver

 T – set of transitions



IOO–12

EMDPN – 2

 In – set of edges to transitions
 (P ∪ D ∪ M) ↔ T

 It is a relation between places and transitions
 If deterministic then it is a function from places to

transitions

 Out – set of edges from transitions
 T ↔ (P ∪ D ∪ M)

 Define / use paths (du-paths)
 Focus on connectivity
 Ignore types of nodes



IOO–13

Inheritance-induced data flow

 Begins with a data place
 Ends with a data place
 Data places alternate with isA transitions

 isA transitions are degenerate execution paths
 Implement inheritance

See Figure 18.8



IOO–14

Message-induced data flow

 Set of transitions
 Start with defining transition
 End with use transition

 Can be definition clear or not definition clear

See Figure 18.9



IOO–15

Slices

 Useful if executable
 Difficult to do in OO environment

 Can be used for desk checking for fault location


