!'- OO Integration Testing

Chapter 18

Questions

What assumption is made for integration testing?

How does OO unit definition alter integration testing?

What choices do we have with integration testing?

What information is needed for integration testing?

100-2

Overview

= Assume unit level testing is complete

= For OO have two choices for unit

= For method is a unit
= Need to integrate within the class

Does occur with classes that have multiple designers /
implementers

= Need to integrate classes
= For class is a unit
= Need to unflatten classes
= Need to remove test methods

I00-3

Overview - 2

= Static and dynamic choices

= Address polymorphism statically
= Test for each polymorphic context

= Dynamic view is more challenging

I00-4

Information environment

m Class definitions
= Source text

= Static model
= Inheritances & uses structure

= Dynamic model
= Use cases
= Finite state machines — Petri nets
= Class communication — message passing
« Statecharts are not useful

I00-5

Class communication

= Collaboration diagrams
= Annotated call graph - Figure 18.1

= Sequence diagrams
= Finite state machines with time axis — Figure 18.2
« States
Classes — regular grain
Methods — fine grain
» Transitions are messages sending

= Close analogy with MM-paths

I00-6

Integration types

= Pair-wise
= 100 much extra work with stubs and drivers

= Neighbourhood

= Using collaboration diagrams can cause problems
« Some neighbourhoods may be include most classes
= Some neighbourhoods may be only two classes
=« Need better definition
= Centers of a graph
» Minimize maximum distance to other nodes
Analogy with ripples from dropping something in water
= Neighbourhood grows from center
Less stubs
Less diagnostic precision

I00-7

MM-paths

= MM-path in OO

= A sequence of method executions linked by messages
« Start at any class
« End at message quiescence
At class that does not send any messages

= Largest integration level
» Classes implement atomic system function
» Stimulus / response pair of port-level events

I00-8

Atomic System Function

An MM-path
= Begins with an input port event
= Ends with an output port event

Begin and end at event quiescence
Addresses event-driven nature of OO programs

At the boundary of integration and system testing

100-9

Data flow testing

= MM-paths, like DD-paths, are insufficient

= Data values add complexity
= Come from inheritance
= Come from stages of message passing

= Program graphs are basis but are too simple
= Need event and message driven Petri nets

I00-10

Event & Message driven Petri nets (EMDPN)

P — set of port events

D — set of data places

M — set of message places
= Output for sender
= Input for receiver

T — set of transitions

ANRV
O

> >
<

I00-11

EMDPN - 2

= In — set of edges to transitions
s (PUDUM)<T
» It is a relation between places and transitions

« If deterministic then it is a function from places to
transitions

= Out — set of edges from transitions
=« T (PUDUM)

= Define / use paths (du-paths)
= Focus on connectivity
= Ignore types of nodes

I00-12

Inheritance-induced data flow

= Begins with a data place
= Ends with a data place

= Data places alternate with isA transitions

= iSA transitions are degenerate execution paths
« Implement inheritance

See Figure 18.8

I00-13

Message-induced data flow

» Set of transitions
» Start with defining transition
= End with use transition

= Can be definition clear or not definition clear

See Figure 18.9

I00-14

Slices

s Useful if executable
= Difficult to do in OO environment

= Can be used for desk checking for fault location

I00-15

