
Interaction Testing

Chapter 15



IAT–2

Interaction faults and failures

 Subtle
 Difficult to detect with testing
 Usually seen after systems have been delivered

 In low probability threads
 Occur after a long time – large numbers of thread

execution
 Difficult to reproduce

 To be able to test interactions need
 To understand what they are
 Mathematical description

 Look at requirements specification

 Concerned with unexpected interactions



IAT–3

Context of interaction

 It is a relationship InteractsWith among
 Data   Events    Threads
 Actions   Ports

 The relationship reflexive
 It is binary relation between

 Data & events     Data & threads     Events & threads
 There are too many relationships to be of direct use

 Indicates that something is missing
 In this case location

 Time and place
 Select location to be an attribute of the other entities

instead of being a new entity
 Short coming of requirements to not include it



IAT–4

Meaning of the location attribute

 Time
 An instant

 When something happens
 Ask before and after type questions

 An interval
 Interested in duration

 Location
 Have a coordinate system
 For software use processor residence

 What does this mean?  Location is binary – in / out?



IAT–5

Events & states

 Two meanings for event
 Causes confusion, ambiguity, wordy explanations

 Use two words
 Use event for instant
 Use state, activity for duration

 Occurs between two events



IAT–6

Properties of threads and processors

 Threads have duration
 They are activities

 A processor can be executing only one thread at a time
 The processor is in a state of executing a thread

 Timesharing, multiprocessing interleaves thread
execution

 Processor changes state for each thread
 Here thread durations overlap in time



IAT–7

Properties of threads and processors – 2

 On one processor events can be simultaneous within the
minimum resolution of time-grain markers
 BUT reality (hardware) puts an order on those events – puts

them in a sequence
 As far as we can tell it is a random choice
 At another occurrence the events may be ordered in a

different sequence
 That is a difficulty in testing interaction

 On different processors, events can occur simultaneously
 Common events by definition must occur at the same time

 Consider a two people colliding – the collision is a
common event to the two people (processors)

 Synchronous communication for processors start and end
with common events



IAT–8

Properties of threads and processors – 3

 For a single processor
 Input and output events occur during thread execution
 From the perspective of a thread they cannot occur

simultaneously, because they occur at instructions and
instructions are executed sequentially

 From the perspective of devices port events can be
simultaneous

 For each port events occur in time sequence

 Threads occur only within one processor
 Do not cross process boundaries
 Have trans-processor quiescence when threads reach

processor boundaries
 Analogous to crossing unit boundaries in integration

testing



IAT–9

Properties of threads and processors – 4

 What we want is sane behaviour
 This results from considering events to be in a linear

sequence
 For example synchronous communications take into

account message transmission time – break the
communication into events such as

 Sender starts sending
 Receiver receives starts receiving
 Sender ends sending
 Receiver ends receiving

 For interaction faults and failures need to go down to this
level

 Implies time-grain markers need to have very fine
resolution



IAT–10

Taxonomy of interactions

 Static interactions in a single processor
 Static interactions in multiprocessor
 Dynamic interactions in a single processor
 Dynamic interactions in multiprocessor



IAT–11

Square of opposition

 Given two propositions P and Q
 They are contraries if both cannot be true
 Sub-contraries  if both cannot be false
 Contradictories if exactly one is true
 Q is a subaltern of P if the truth of P guarantees the truth of

Q – i.e. P → Q



IAT–12

Why logic?

 Consider the following data interactions
 Precondition for a thread is a conjunction of data

propositions
 Contrary or contradictory data values prevent execution

 Context-sensitive input port events usually involve
contradictory or contrary data

 Case statement clauses, if correct, are contradictories
 Rules in a decision table, if correct, are contradictories



IAT–13

Static interactions in a single processor

 Analogous to combinatorial circuits
 Model with decision tables and unmarked event-driven Petri

nets
 Telephone system example

 Call display and unlisted numbers are contraries
 Both cannot be satisfied
 Both could be waived



IAT–14

Static interactions in a multiprocessor

 Location of data is important
 Telephone example 1

 Calling party in location of one processor (area)
 Receiving party in another processor
 Checking for contrary data such as caller id and unlisted

numbers
 Can only check when caller and receiver are connected

by a thread
 A contrary relationship exists as a static interaction

across multiple processors when they interact



IAT–15

Static interactions in a multiprocessor – 2

 Telephone example 2 – static distributed interaction
 Call forwarding is defined

 Alice has call forwarding to Bob
 Bob has call forwarding to Charlene
 Charlene has call forwarding to Alice

 The call forwarding data is contrary – cannot all be true at
the same time

 Have distributed contraries
 Call forwarding is a property of a local office
 A thread sets a forwarding location
 Have a fault but not a failure until Donald places a call to

one of Alice, Bob or Charlene



IAT–16

Static interactions summary

 The same in both single processor and multiprocessor
systems

 More difficult to detect in multiprocessor systems



IAT–17

Graph connectedness for dynamic interactions

 Make use of n-connectedness in graphs



IAT–18

Data-data connectedness

 0-connected – Logically independent
 2-connected – sub-alternation
 3-connected – bidirectional – contraries, contradictories and

sub-contraries



IAT–19

Dynamic, single processor interactions

 Six potential pairs interact
 Combination pairs of: data, events and threads

 Each interaction can exhibit 4 different graph connectedness
attributes

 Result is 24 sub-categories for these interactions



IAT–20

Dynamic, single processor interactions – 2

 Examples
 1-connected data-data

 Two or more data items are input the same action
 2-connected data-data

 When a data item is used in a computation
 3-connected data-data

 When data are deeply related, as in repetition and
semaphores

 1-connected data-event
 Context-sensitive port input events



IAT–21

Dynamic, single processor interactions – 3

 Do not analyze all possibilities
 Interaction faults only result in failure when threads

establish a connection

 Thread-thread interaction occurs
 Through events
 Through data



IAT–22

Petri net external inputs and outputs

 External inputs
 Places with in-degree 0

 Can be port or data pre-condition place

 External outputs
 Places with out-degree 0

 Can be port or data post-condition place

For an example
see Figure 15.5



IAT–23

Thread-thread interaction

 Each thread can be represented by an EDPN
 The symbolic names of the places and transitions correspond

to those in the EDPN for the system
 Synonyms in the thread nets need to be resolved when they

interact

 Threads only interact through external input and output
events
 The intersection of the external input and output places for

the threads indicates where they interact with each other

For an example
see Figures 15.6 & 15.7



IAT–24

Thread-thread interaction – 2

 External events always remain external
 External data may become internal

 Output of one thread is input to another
 Call forwarding



IAT–25

Thread-thread connectedness definition

 T1 and T2 are threads where EI1, EI2, EO1 and EO2 are the
external inputs and outputs of the threads
 0-connected

 EI1 ∩ EI2 = ∅     ∧   EO1 ∩ EO2 = ∅
EO2 ∩ EI1 = ∅   ∧   EO1 ∩ EI2 = ∅

 1-connected
 EI ≠  ∅   ⊕   EO ≠  ∅

 2-connected – only through data places
 EO2 ∩ EI1 = ∅   ⊕   EO1 ∩ EI2 = ∅

 3-connected – only through data places
 EO2 ∩ EI1 = ∅   ∧   EO1 ∩ EI2 = ∅



IAT–26

Directed thread graph

 A directed thread graph can be constructed
 Nodes are threads

 External inputs & outputs are not in the node
 They remain external to the node.

 Edges connect threads according to the external input &
output places

 Figure 15.8 is an example made from Figure 15.7

 Can see connectedness relationships



IAT–27

1-connected threads

 1-connected threads from input places are the typical case for
Petri-net mutual exclusion
 A token on the common input is consumed by one of the

threads and other cannot proceed

 1-connected threads to output places have an ambiguity
  We do not know which thread produced an output token

 Can occur from unexpected thread interaction where
some threads completed execution earlier



IAT–28

2- and 3-connected threads

 Can only occur with data places
 Port places cannot be both input an output

 Note some devices may have both input and output
capability but we always split into independent input
and output logical devices

 Problem is often time difference between the setting of data
and the occurrence of a failure due to thread interaction
 Read-only data has infinite duration

 Rarely causes problems
 Read/write data has a duration

 Problem is caused by an earlier write that has been
replaced

 Can be very difficult to diagnose and test



IAT–29

Thread interaction Warning

Problems occur when we

Expect 0-connectedness

But have 1-, 2- or 3-connectedness



IAT–30

Dynamic, multi-processor interactions

 Problem here is threads and events occur in parallel
 We have concurrent behaviour with a collection of

communicating sequential processors (CSP)
 Have non-deterministic behaviour
 To fully understand need to learn the mathematics of CSP

 Without that can only work through an example
 Figures and tables in Section 15.2.4



IAT–31

Dynamic, multi-processor interactions – 2

 Difficulties arise from
 Combined finite state machines grow exponentially in size

and complexity
 May be difficult to rationalize initial marking
 Have mutual exclusion

 Contraries
 What is the duration of an output

 Is it controlled by the Petri net?
 Or fixed in some way?

 Time interval between events and model reaction time
 What happens to data values
 Output events



IAT–32

Informal definition of determinism

 (1) A system is deterministic if, given its inputs, we can
always predict its outputs

 (2) A system is deterministic if it always produces the same
outputs for a given set of inputs
 For a non-deterministic system it may be difficult to

demonstrate different output
 Process P non-deterministically chooses at every step

whether to output an ‘a’ or a ‘b’
 Process Q non-deterministically chooses once whether

to output all ‘a’s or all ‘b’s

P = (a → P)      (b → P) Q = (a → Qa)      (b → Qb)
Qa = (a → Qa)
Qb = (b → Qb)

traces(Q) ⊂ traces(P) 



IAT–33

Formal definition of determinism

 P is deterministic ↔ ∀s : traces (P) •
X ∈ refusals (P / s) ↔ X ∩ (P / s)1 = {}

 P1 = { e  〈 x 〉 ∈ traces (P) }

 A system is deterministic if at every step the system never
refuses to engage in any external event appropriate at that
step

 P1 definition is the set of events in which P may engage on
the first step

 P / s  is the process after P has engaged in all of the events
in the trace s

 A trace is a record of the external events in which a process
has engaged

 A refusal is a set of events in which a process refuses to
engage



IAT–34

On non-determinism

 In a Petri net non-determinism arises when two or more
transitions are enabled
 Which transition fires is random
 The choice can be made by

 An external event
 An internal event

 not stated in the textbook

 Deadlock occurs when no transition fires
 Bad but at least detectable

 Livelock occurs when internal events take over
 Even if an external event is available the system chooses

an internal event
 Basis of infinite loops in programs



IAT–35

On non-determinism – 2

 A thread is locally non-deterministic if we cannot predict its
output with information local to the thread
 In many cases non-determinism vanishes when sufficient

context is provided
 Changing the lever in windshield wiper cannot

determine output
 By adding in the dial, the output can be determined

 Implication for testers
 When testing threads with external inputs – especially data

– it is necessary to test the interaction with all other threads
that can be n-connected (n > 0) via external inputs



IAT–36

Client / Server testing

 The complexities
 Base system has program components

 Database, application, presentation (logical output)
 Have a centralized, fat server and fat client distinction

 Figure 15.13
 Entire system includes above items plus

 Network
 GUI
 May have homogeneous or heterogeneous processors

 Lots of possibilities for finger pointing takes place when things
go wrong



IAT–37

Client / Server testing – 2

 Much of the system is stable
 Should testing be needed

 Use functional testing – no source text



IAT–38

Client / Server testing – 3

 Interesting part is the GUI
 Consists of multiple windows that need to synchronized

 Communicating sequential processors (FSMs)
 All events are port events
 Have dynamic interactions across multiple processors
 Use operational profiles
 Test individual threads
 Then test thread interaction

 Big problem if there are multiple clients such as shared
bank accounts


