
System Testing

Chapter 14

ST–2

Overview

 Common experience
 Use functional testing
 Looking for correct behaviour, not looking for faults

 Intuitively familiar
 Too informal

 Little test time due to delivery deadlines
 Too informal

 Need a good understanding and theory
 Use threads
 Atomic system functions

ST–3

Possible thread definitions

 Difficult to define
 A scenario of normal usage
 A system-level test case
 A stimulus-response pair
 Behaviour that results from a sequence of system-level

inputs
 An interleaved sequence of port input and output events
 A sequence of transitions in a state machine description of

the system
 An interleaved sequence of object messages and

executions
 A sequence of

 Machine instructions  Program statements
 MM-paths  Atomic system functions

ST–4

Thread levels

 Unit level
 An execution-time path of program text statements /

fragments
 A sequence of DD-paths
 Tests individual functions

 Integration level
 An MM-path
 Tests interactions among units

 System level
 A sequence of atomic system functions

 Results in an interleaved sequence of port input and
output events

 Tests interactions among atomic system functions

ST–5

Basic questions

 What is a thread?
 How big is it?
 Where do we find them?
 How do we test them?

ST–6

Definition – atomic system function

 Is an action that is observable at the system level in terms of
port input and output events

 Separated by points of event quiescence
 Analogous to message quiescence at the integration level
 Natural end point

 Begins at a port input event
 Terminates with a port output event
 At system level no interest in finer resolution
 Seam between integration and system testing

 Largest item for integration testing
 Smallest for system testing

ST–7

Thread-related definitions

 Atomic system function graph – ASF graph
 A directed graph where

 Nodes are ASFs
 Edges represent sequential flow

 Source / Sink atomic system function
 A source / sink node in an ASF

 System thread
 A path from a source ASF to a sink ASF

 Thread graph
 A directed graph where
 Nodes are system threads
 Edges represent sequential execution of threads

ST–8

Basis for requirements specifications

 All requirements specifications are composed of the following
basis set of constructs
 Data  Events  Threads
 Actions  Devices

 All systems can be described in terms of the basis set of
constructs

ST–9

Basis concepts E/R model

1 .. n is read as many

ST–10

Data

 Focus on information used and created by the system
 Data is described using

 Variables, data structures, fields, records, data stores and
files

 Entity-relationship models describe highest level
 Regular expressions used at more detailed level

 Jackson diagrams (from Jackson System Development)

 Data view
 Good for transaction view of systems
 Poor for user interface

ST–11

Data and thread relationships

 Threads can sometimes be identified from the data model
 1-1, N-1, 1-N and N-N relationships have thread implications

 Need additional data to identify which of many entities is
being used – e.g. account numbers

 Read-only data is an indicator of source atomic system
functions

ST–12

Actions

 Action-centered modeling is a common form for requirements
specification

 Actions have input and output
 Either data or port events

 Synonyms
 Transform, data transform, control transform, process,

activity, task, method and service

 Used in functional testing
 They can be refined (decomposed)

 Basis of structural testing

ST–13

Devices

 Port input and output handled by devices
 A port is a point at with an I/O device is attached to a system
 Physical actions occur on devices and enter / leave system

through ports
 Physical to logical translation on input
 Logical to physical translation on output

 System testing can be moved to the logical level – ports
 No need for devices

 Thinking about ports helps testers define input space and
output space for functional testing

ST–14

Events

 A system-level input / output that occurs on a port device
 Data-like characteristic

 Input / output of actions
 Discrete

 Action-like characteristic
 The physical – logical translation done at ports

 From the tester's viewpoint think of it as a physical event
 Logical event is a part of integration testing

ST–15

On continuous events

 No such thing
 Events have the following properties

 Occur instantaneously – No duration
 A person can start eating and stop eating
 No corresponding event eating

 Take place in the real world, external to the system
 Are atomic, indivisible, no substructure
 Events can be common among entities

 If you want or need to handle duration, then you need start
and end events and time-grain markers to measure the
duration

 Events are detected at the system boundary by the arrival of
a message

ST–16

On the temperature event

 Temperature is not an a continuous event
 To be continuous a continuous message would have to

arrive at the system boundary
 A continuous message is not a meaningful concept
 Messages are discrete

 In practice, thermometers do not send messages to a system,
instead a system reads a thermometer
 Reading is at the discretion of the receiver not the sender

 Called a statevector read
 The other option is message sending which is at the option

of the sender, receiver can only read after the message is
sent

 Called a data read

ST–17

Threads

 Almost never occur in requirements specifications
 Testers have to search for them in the interactions among

data, actions and events
 Can occur in rapid prototyping with a scenario recorder

 Behaviour models of systems make it easy to find threads
 Problem is they are models – not the system

ST–18

Modeling with basis concepts

Also called
control model

Weak connection

ST–19

Behaviour model

 Need appropriate model
 Not too weak to express important behaviours
 Not too strong to obscure interesting behaviours

 Decision tables
 Computational systems

 Finite state machines
 Menu driven systems

 Petri nets
 Concurrent systems
 Good for analyzing thread interactions

ST–20

Finding threads in finite state machines

 Construct a machine such that
 Transitions are caused by port input events
 Actions on transitions are port output events

 Definition of the machine may be hierarchical, where
lower levels are sub-machines – may be used in multiple
contexts

 Test cases follow a path of transitions
 Take note of the port input and output events along the

path
 Problem is path explosion

 Have to choose which paths to test

ST–21

Structural strategies for thread testing

 Bottom-up
 The only one

ST–22

Structural coverage metrics

 Use same coverage metrics as for paths in unit testing
 Finite state machine is a graph

 Node coverage is analogous to statement coverage
 The bare minimum

 Edge coverage is the better minimum standard
 If transitions are in terms of port events, then edge

coverage implies port coverage

ST–23

Functional strategies for thread testing

 Event-based
 Port-based
 Data-based

ST–24

Event-based thread testing

 Five port input thread coverage metrics are useful
 PI1: Each port input event occurs

 Inadequate bare minimum

 PI2: Common sequences of port input events occur
 Most common
 Corresponds to intuitive view of testing
 Problem: What is a common / uncommon sequence?

 PI3: Each port input event occurs in every relevant data
context

 Physical input where logical meaning is determined by
the context in which they occur

 Example is a button that has different actions depending
upon where in a sequence of buttons it is pressed

ST–25

Event-based thread testing – 2

 PI4: For a given context, all inappropriate input events
occur

 Start with a context and try different events
 Often used on an informal basis to try to break the

system
 Partially a specification problem

 Difference between prescribed and proscribed behaviour
 Proscribed behaviour is difficult to enumerate

 PI5: For a given context, all possible input events occur
 Start with a context and try all different events

ST–26

Event-based thread testing – 3

 PI4 & PI5 are effective
 How does one know what the expected output is?
 Good feedback for requirements specification
 Good for rapid prototyping

ST–27

Event-based thread testing – 4

 Two output port coverage metrics
 PO1: Each port output event occurs

 An acceptable minimum
 Effective when there are many error conditions with

different messages

 PO2: Each port output event occurs for each cause
 Most difficult faults are those where an output occurs

for an unsuspected cause
 Example: Message that daily withdrawal limit reached

when cash in ATM is low

ST–28

Port-based thread testing

 For each port
 Try threads that exercise ports with respect to the events in

which they can engage
 Useful when port devices come from outside suppliers
 The many-to-many relationship between ports and events

should be exercised in each direction
 See E/R diagram

 Complements event-based testing

ST–29

Event driven systems

 Event and port based testing is good for event driven systems
 Reactive systems – react to input events, often with output

events
 Are long running
 Maintain a relationship with the environment
 E/R model is simple and not particularly useful

Note: payroll example when properly designed is a long running
program. It is a sequence of payroll runs, where each run is in
the context of previous runs.

ST–30

Data-based thread testing

 Good for systems where data is of primary importance
 Static
 Transformational

 Support transactions on a database
 E/R model is dominant

ST–31

Data-based thread testing – 2

 Data-based coverage metrics – based on E/R model
 DM1: Exercise the cardinality of every relationship

 1-1, 1-N, N-1, N-N
 DM2: Exercise the participation of every relationship

 Does every specified entity participate
 Can have numerical limits

 DM3: Exercise the functional dependencies among
relationships

 Functional dependencies are explicit logical
connections

 Cannot repair a machine that one does not have

ST–32

Thread explosion – Pseudo-structural testing

 Use the graph-based metrics as a cross-check on the
functional coverage metrics
 Analogous to using DD-paths to identify gaps and

redundancies of functional testing at the unit level

 Pseudo occurs because graph is on the control model, which
is not the system itself

 Weak method if model is poor
 used the incorrect model for type of system;

transformational, interactive, concurrent
 Did not design a good model

ST–33

Thread explosion – Pseudo-structural testing – 2

 Decision tables and finite state machines good for atomic
system function testing

 Thread-based testing is best done with Petri nets
 Devise tests to cover every place, every transition, every

sequence of transitions

ST–34

Thread explosion – Operational profiles

 Make use of Zipf's law
 80% of activities occur in 20% of the activity space

 Make use of the idea
 Testing is to find cases that when a failure occurs the

presence of a fault is revealed

 Make use of the fact
 Distribution of faults is indirectly related to the reliability of

a system

 Make use of the definitions
 System reliability is the probability that no failure occurs

within a given time-period
 Faults are on low use threads – the system is reliable
 Faults are on high use threads – system is unreliable

ST–35

Thread explosion – Operational profiles – 2

 When test time is limited maximize probability of finding faults
by finding failures in the most frequently used threads

 Use a decision tree
 Works well with hierarchy of finite state machines
 Estimate the probability of each outgoing transition

(sum to 1)
 Can get statistics from customer monitoring / feedback

 Probabilities in sub-states split the probability of the parent
state

 The probability of a thread is the product of the transitions
comprising the thread

 Test from high to low probability

ST–36

Thread explosion – Progressive & regressive testing

 Use of builds makes a need for regression testing
 20% of changes to a system create new faults
 Regression testing takes a significant amount of time
 Reduce by looking at difference between progression and

regression testing

 Most common regression testing is to run all the tests
 Progressive testing needs to be diagnostic to isolate faults

more easily
 Use short threads

 Regressive testing not as concerned with fault isolation
 Use long threads

ST–37

Thread explosion – Progressive & regressive – 2

 Together have good coverage
 State & transition coverage sparse for progressive tests,

dense for regressive tests

 Different from operational profiles
 Good regressive tests have low operational probability
 Good progressive tests have high operational probability

