!'- System Testing

Chapter 14



Overview

Common experience
= Use functional testing
» Looking for correct behaviour, not looking for faults

Intuitively familiar
= Too informal

Little test time due to delivery deadlines
= Too informal

Need a good understanding and theory
= Use threads
= Atomic system functions

ST-2



Possible thread definitions

Difficult to define

A scenario of normal usage
A system-level test case
A stimulus-response pair

Behaviour that results from a sequence of system-level
inputs

An interleaved sequence of port input and output events

A sequence of transitions in a state machine description of
the system

An interleaved sequence of object messages and
executions

A sequence of
« Machine instructions = Program statements
« MM-paths = Atomic system functions

ST-3



Thread levels

= Unit level

= An execution-time path of program text statements /
fragments

= A sequence of DD-paths
» Tests individual functions

= Integration level
= An MM-path
= Tests interactions among units

= System level

= A sequence of atomic system functions

» Results in an interleaved sequence of port input and
output events

= Tests interactions among atomic system functions

ST—4



Basic questions

= What is a thread?
= How big is it?
= Where do we find them?
= How do we test them?

ST-5



Definition — atomic system function

Is an action that is observable at the system level in terms of
port input and output events

Separated by points of event quiescence
= Analogous to message quiescence at the integration level
= Natural end point

Begins at a port input event
Terminates with a port output event
At system level no interest in finer resolution

Seam between integration and system testing
= Largest item for integration testing
= Smallest for system testing

ST-6



Thread-related definitions

Atomic system function graph — ASF graph

= A directed graph where
= Nodes are ASFs
« Edges represent sequential flow

Source / Sink atomic system function
= A source/sink node in an ASF

System thread
= A path from a source ASF to a sink ASF

Thread graph
= A directed graph where
= Nodes are system threads
= Edges represent sequential execution of threads

ST-7



Basis for requirements specifications

= All requirements specifications are composed of the following
basis set of constructs

= Data = Events s Threads
= Actions s Devices

= All systems can be described in terms of the basis set of
constructs

ST-8



Basis concepts E/R model

1..n 1..n
Data Input
Action
Output 1
Event 1..n N 1n
1..n SequenceOf
1..n
Occur
Thread
1..n
Device

1 .. nis read as many

ST-9



Data

= Focus on information used and created by the system

= Data is described using

= Variables, data structures, fields, records, data stores and
files

= Entity-relationship models describe highest level
= Regular expressions used at more detailed level
» Jackson diagrams (from Jackson System Development)

= Data view

= Good for transaction view of systems
= Poor for user interface

ST-10



Data and thread relationships

= [hreads can sometimes be identified from the data model

= 1-1, N-1, 1-N and N-N relationships have thread implications

» Need additional data to identify which of many entities is
being used - e.g. account numbers

= Read-only data is an indicator of source atomic system
functions

ST-11



Actions

Action-centered modeling is a common form for requirements
specification

Actions have input and output
= Either data or port events

Synonyms

= Transform, data transform, control transform, process,
activity, task, method and service

Used in functional testing

They can be refined (decomposed)
= Basis of structural testing

ST-12



Devices

Port input and output handled by devices
A port is a point at with an 1/0O device is attached to a system

Physical actions occur on devices and enter / leave system
through ports

= Physical to logical translation on input
= Logical to physical translation on output

System testing can be moved to the logical level — ports
= No need for devices

Thinking about ports helps testers define input space and
output space for functional testing

ST-13



Events

A system-level input / output that occurs on a port device

Data-like characteristic
= Input/ output of actions
= Discrete

Action-like characteristic
= The physical — logical translation done at ports

From the tester's viewpoint think of it as a physical event
= Logical event is a part of integration testing

ST-14



On continuous events

No such thing

Events have the following properties

= Occur instantaneously — No duration
»« A person can start eating and stop eating
= No corresponding event eating

= Take place in the real world, external to the system
= Are atomic, indivisible, no substructure
= Events can be common among entities

If you want or need to handle duration, then you need start
and end events and time-grain markers to measure the
duration

Events are detected at the system boundary by the arrival of
a message

ST-15



On the temperature event

= [emperature is not an a continuous event

= To be continuous a continuous message would have to
arrive at the system boundary

»« A continuous message is not a meaningful concept
« Messages are discrete

= In practice, thermometers do not send messages to a system,
iInstead a system reads a thermometer

= Reading is at the discretion of the receiver not the sender
« Called a statevector read

= The other option is message sending which is at the option
of the sender, receiver can only read after the message is

sent
= Called a data read

ST-16



Threads

= Almost never occur in requirements specifications

= Testers have to search for them in the interactions among
data, actions and events

= Can occur in rapid prototyping with a scenario recorder

= Behaviour models of systems make it easy to find threads
= Problem is they are models — not the system

ST-17



Modeling with basis concepts

Data
Structural Event
Model Behaviour
Model
Action
Also called
Context Thread control model
Model
Device

Weak connection

ST-18



Behaviour model

Need appropriate model
= Not too weak to express important behaviours
= Not too strong to obscure interesting behaviours

Decision tables
= Computational systems

Finite state machines
= Menu driven systems

Petri nets
= Concurrent systems
= Good for analyzing thread interactions

ST-19



Finding threads in finite state machines

= Construct a machine such that
= Transitions are caused by port input events

= Actions on transitions are port output events
« Definition of the machine may be hierarchical, where
lower levels are sub-machines — may be used in multiple
contexts
= Test cases follow a path of transitions

= Take note of the port input and output events along the
path

= Problem is path explosion
=« Have to choose which paths to test

ST-20



Structural strategies for thread testing

= Bottom-up
= The only one

ST-21



Structural coverage metrics

= Use same coverage metrics as for paths in unit testing
= Finite state machine is a graph

= Node coverage is analogous to statement coverage
= The bare minimum

= Edge coverage is the better minimum standard

= [If transitions are in terms of port events, then edge
coverage implies port coverage

ST-22



Functional strategies for thread testing

= Event-based
= Port-based

= Data-based

ST-23



Event-based thread testing

= Five port input thread coverage metrics are useful

= PI1: Each port input event occurs
» Inadequate bare minimum

= PI2: Common sequences of port input events occur
« Most common
« Corresponds to intuitive view of testing
« Problem: What is a common / uncommon sequence?

= PI3: Each port input event occurs in every relevant data
context

« Physical input where logical meaning is determined by
the context in which they occur

« Example is a button that has different actions depending
upon where in a sequence of buttons it is pressed

ST-24



Event-based thread testing — 2

= Pl4: For a given context, all inappropriate input events
occur

» Start with a context and try different events

« Often used on an informal basis to try to break the
system

« Partially a specification problem
Difference between prescribed and proscribed behaviour
Proscribed behaviour is difficult to enumerate

= PI5: For a given context, all possible input events occur
« Start with a context and try all different events

ST-25



Event-based thread testing — 3

= Pl4 & PI5 are effective
= How does one know what the expected output is?
= Good feedback for requirements specification
= Good for rapid prototyping

ST-26



Event-based thread testing — 4

= [wo output port coverage metrics

= PO1: Each port output event occurs
= An acceptable minimum

« Effective when there are many error conditions with
different messages

= PO2: Each port output event occurs for each cause

=« Most difficult faults are those where an output occurs
for an unsuspected cause

« Example: Message that daily withdrawal limit reached
when cash in ATM is low

ST-27



Port-based thread testing

= For each port

= Try threads that exercise ports with respect to the events in
which they can engage

= Useful when port devices come from outside suppliers

= The many-to-many relationship between ports and events
should be exercised in each direction

« See E/R diagram

= Complements event-based testing

ST-28



Event driven systems

= Event and port based testing is good for event driven systems

= Reactive systems — react to input events, often with output
events

= Are long running
= Maintain a relationship with the environment
= E/R model is simple and not particularly useful

Note: payroll example when properly designed is a long running
program. Itis a sequence of payroll runs, where each run is in
the context of previous runs.

ST-29



Data-based thread testing

= Good for systems where data is of primary importance
= Static

= Transformational
= Support transactions on a database

= E/R model is dominant

ST-30



Data-based thread testing — 2

= Data-based coverage metrics — based on E/R model

= DM1: Exercise the cardinality of every relationship
= 1-1, 1-N, N-1, N-N

= DM2: Exercise the participation of every relationship
« Does every specified entity participate
= Can have numerical limits

= DM3: Exercise the functional dependencies among
relationships

»« Functional dependencies are explicit logical
connections

Cannot repair a machine that one does not have

ST-31



Thread explosion — Pseudo-structural testing

= Use the graph-based metrics as a cross-check on the
functional coverage metrics
= Analogous to using DD-paths to identify gaps and
redundancies of functional testing at the unit level

= Pseudo occurs because graph is on the control model, which
is not the system itself

= Weak method if model is poor

= used the incorrect model for type of system;
transformational, interactive, concurrent

= Did not design a good model

ST-32



Thread explosion — Pseudo-structural testing — 2

= Decision tables and finite state machines good for atomic
system function testing

= Thread-based testing is best done with Petri nets

= Devise tests to cover every place, every transition, every
sequence of transitions

ST-33



Thread explosion — Operational profiles

Make use of Zipf's law
= 80% of activities occur in 20% of the activity space

Make use of the idea
= Testing is to find cases that when a failure occurs the
presence of a fault is revealed
Make use of the fact
= Distribution of faults is indirectly related to the reliability of
a system
Make use of the definitions

= System reliability is the probability that no failure occurs
within a given time-period

= Faults are on low use threads — the system is reliable
= Faults are on high use threads — system is unreliable

ST-34



Thread explosion — Operational profiles — 2

= When test time is limited maximize probability of finding faults
by finding failures in the most frequently used threads

= Use a decision tree

Works well with hierarchy of finite state machines

Estimate the probability of each outgoing transition
(sumto 1)

» Can get statistics from customer monitoring / feedback

Probabilities in sub-states split the probability of the parent
state

The probability of a thread is the product of the transitions
comprising the thread

Test from high to low probability

ST-35



Thread explosion — Progressive & regressive testing

Use of builds makes a need for regression testing
s 20% of changes to a system create new faults
= Regression testing takes a significant amount of time

= Reduce by looking at difference between progression and
regression testing

Most common regression testing is to run all the tests

Progressive testing needs to be diagnostic to isolate faults
more easily

x Use short threads

Regressive testing not as concerned with fault isolation
= Use long threads

ST-36



Thread explosion — Progressive & regressive — 2

= Together have good coverage

= State & transition coverage sparse for progressive tests,
dense for regressive tests

= Different from operational profiles
= Good regressive tests have low operational probability
= Good progressive tests have high operational probability

ST-37



