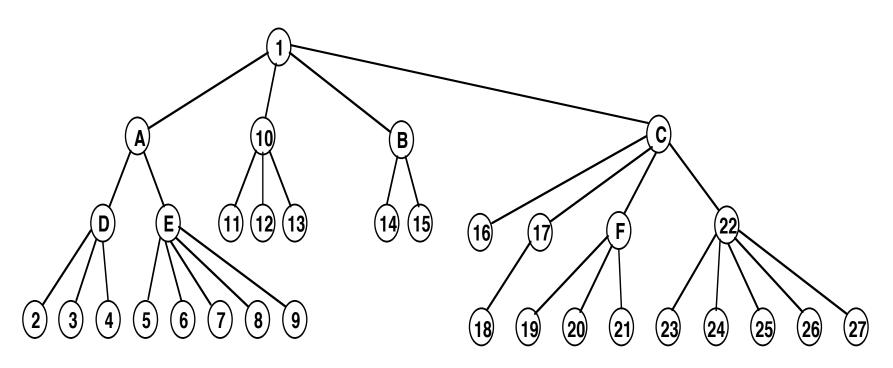


Integration Testing

Chapter 13

Integration Testing

- Test the interfaces and interactions among separately tested units
- Three different approaches
 - Based on functional decomposition
 - Based on call graphs
 - Based on paths



Functional Decomposition

- Functional Decomposition
 - Create a functional hierarchy for the software
 - Problem is broken up into independent task units, or functions
 - Units can be run either
 - Sequentially and in a synchronous call-reply manner
 - Or simultaneously on different processors
- Used during planning, analysis and design

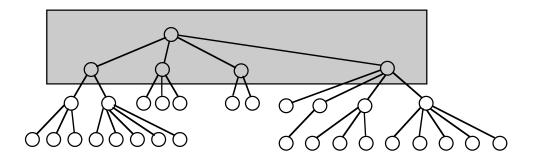
Example functional decomposition

Decomposition-based integration

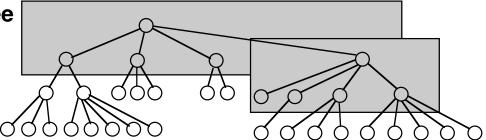
- Four strategies
 - Top-down
 - Bottom-up
 - Sandwich
 - Big bang

Top-Down Integration

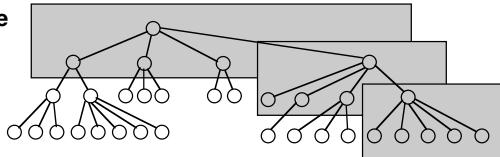
- Top-down integration strategy
 - Focuses on testing the top layer or the controlling subsystem first (i.e. the main, or the root of the call tree)
- The general process in top-down integration strategy is
 - To gradually add more subsystems that are referenced/required by the already tested subsystems when testing the application
 - Do this until all subsystems are incorporated into the test


Top-Down Integration

- Special code is needed to do the testing
- Test stub
 - A program or a method that simulates the input-output functionality of a missing subsystem by answering to the decomposition sequence of the calling subsystem and returning back simulated data



Top-Down integration example

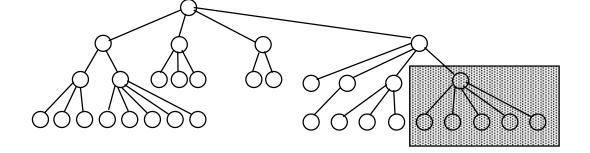

Top Subtree (Sessions 1-4)

Second Level Subtree (Sessions 12-15)

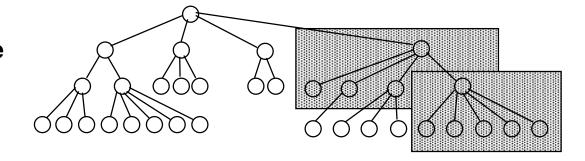
Botom Level Subtree (Sessions 38-42)

Top-Down integration issues

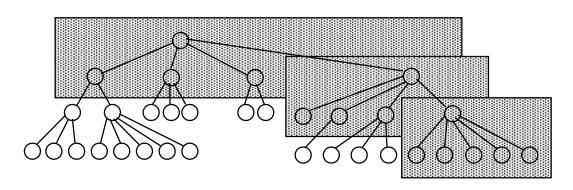
- Writing stubs can be difficult
 - Especially when parameter passing is complex.
 - Stubs must allow all possible conditions to be tested
- Possibly a very large number of stubs may be required
 - Especially if the lowest level of the system contains many functional units
- One solution to avoid too many stubs
 - Modified top-down testing strategy
 - Test each layer of the system decomposition individually before merging the layers
 - Disadvantage of modified top-down testing
 - Both, stubs and drivers are needed


Bottom-Up integration

- Bottom-Up integration strategy
 - Focuses on testing the units at the lowest levels first
 - Gradually includes the subsystems that reference/require the previously tested subsystems
 - Do until all subsystems are included in the testing
- Special driver code is needed to do the testing
 - The driver is a specialized routine that passes test cases to a subsystem
 - Subsystem is not everything below current root module, but a sub-tree down to the leaf level



Bottom-up integration example

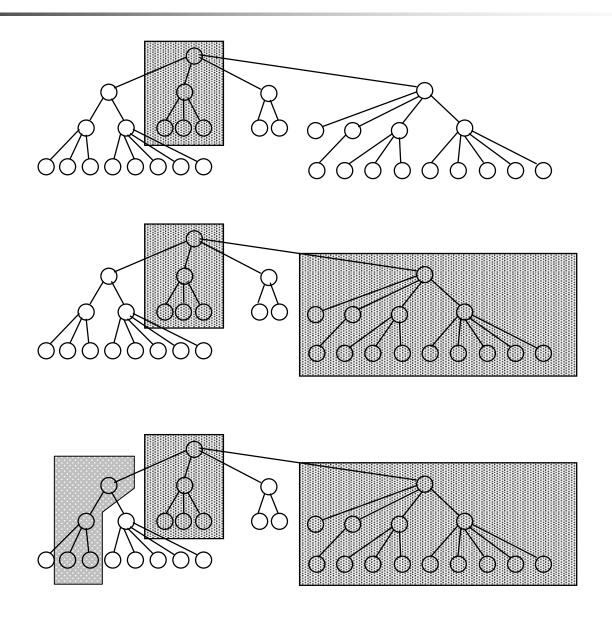

Bottom Level Subtree (Sessions 13-17)

Second Level Subtree (Sessions 25-28)

Top Subtree (Sessions 29-32)

Bottom-Up Integration Issues

- Not an optimal strategy for functionally decomposed systems
 - Tests the most important subsystem (user interface) last
- More useful for integrating object-oriented systems
- Drivers may be more complicated than stubs
- Less drivers than stubs are typically required



Sandwich Integration

- Combines top-down strategy with bottom-up strategy
- Less stub and driver development effort
- Added difficulty in fault isolation
- Doing big-bang testing on sub-trees

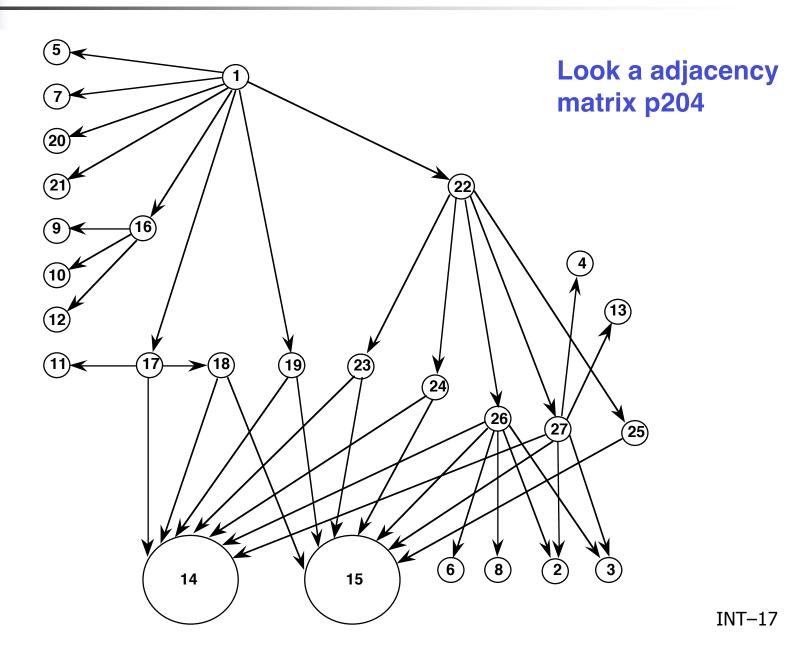
Sandwich integration example

Integration test metrics

 The number of integration tests for a decomposition tree is the following

Sessions = nodes - leaves + edges

- For SATM have 42 integration test sessions, which correspond to 42 separate sets of test cases
- For top-down integration nodes 1 stubs are needed
- For bottom-up integration nodes leaves drivers are needed
- For SATM need 32 stubs and 10 drivers



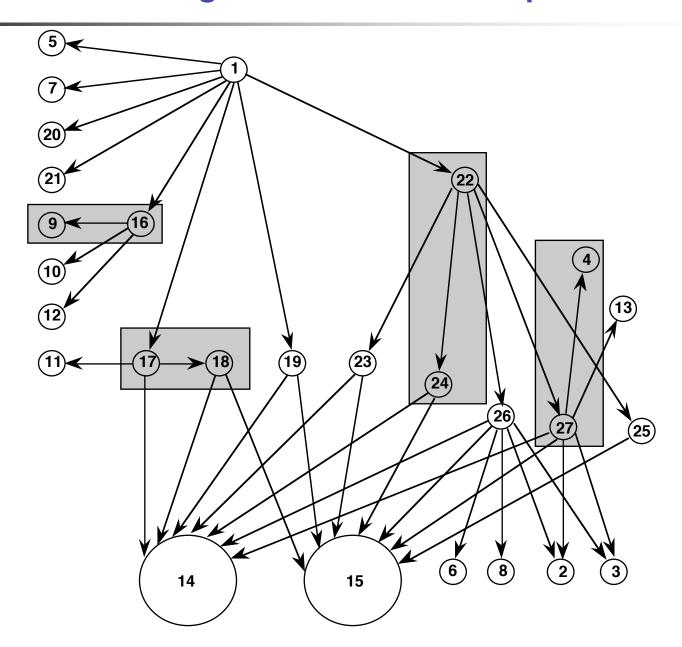
Call Graph-Based Integration

- The basic idea is to use the call graph instead of the decomposition tree
- The call graph is a directed, labeled graph
 - Vertices are program units; e.g. methods
 - A directed edge joins calling vertex to the called vertex
 - Adjacency matrix is also used
 - Do not scale well, although some insights are useful
 - Nodes of high degree are critical

SATM call graph example

Call graph integration strategies

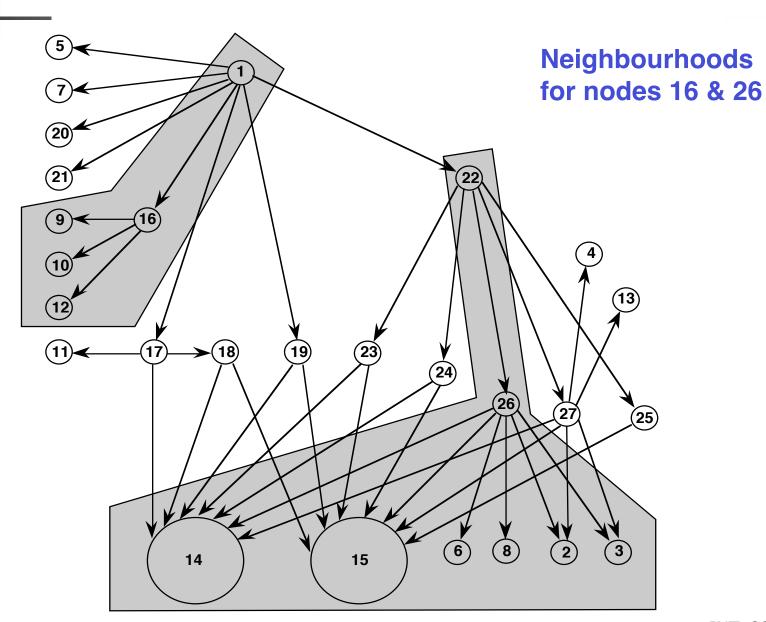
- Two types of call graph based integration testing
 - Pair-wise Integration Testing
 - Neighborhood Integration Testing



Pair-Wise Integration

- The idea behind Pair-Wise integration testing
 - Eliminate need for developing stubs / drivers
 - Use actual code instead of stubs/drivers
- In order not to deteriorate the process to a big-bang strategy
 - Restrict a testing session to just a pair of units in the call graph
 - Results in one integration test session for each edge in the call graph

Pair-wise integration session example



Neighbourhood integration

- The neighbourhood of a node in a graph
 - The set of nodes that are one edge away from the given node
- In a directed graph
 - All the immediate predecessor nodes and all the immediate successor nodes of a given node
- Neighborhood Integration Testing
 - Reduces the number of test sessions
 - Fault isolation is more difficult

Neighbourhood integration example

Pros and Cons of Call-Graph Integration

- Aim to eliminate / reduce the need for drivers / stubs
 - Development effort is a drawback
- Closer to a build sequence
- Neighborhoods can be combined to create "villages"
- Suffer from fault isolation problems
 - Specially for large neighborhoods

Pros and Cons of Call-Graph Integration – 2

- Redundancy
 - Nodes can appear in several neighborhoods
- Assumes that correct behaviour follows from correct units and correct interfaces
 - Not always the case
- Call-graph integration is well suited to devising a sequence of builds with which to implement a system

Path-Based Integration

- Motivation
 - Combine structural and behavioral type of testing for integration testing as we did for unit testing
- Basic idea
 - Focus on interactions among system units
 - Rather than merely to test interfaces among separately developed and tested units
- Interface-based testing is structural while interaction-based is behavioral

Extended Concepts – 1

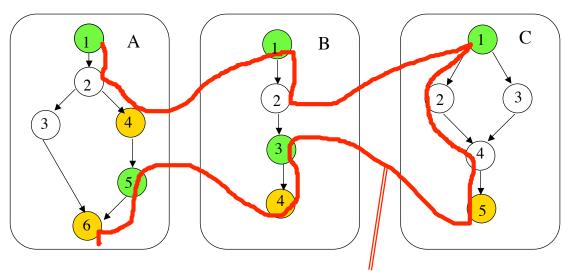
Source node

- A program statement fragment at which program execution begins or resumes.
 - For example the first "begin" statement in a program.
 - Also, immediately after nodes that transfer control to other units.

Sink node

- A statement fragment at which program execution terminates.
 - The final "end" in a program as well as statements that transfer control to other units.

Extended Concepts – 2


- Module execution path
 - A sequence of statements that begins with a source node and ends with a sink node with no intervening sink nodes.
- Message
 - A programming language mechanism by which one unit transfers control to another unit.
 - Usually interpreted as subroutine invocations
 - The unit which receives the message always returns control to the message source.

MM-Path

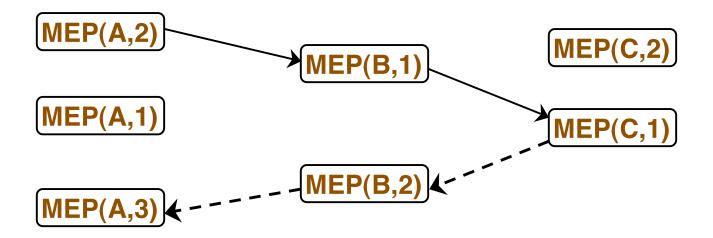
- An interleaved sequence of module execution paths and messages.
- Describes sequences of module execution paths that include transfers of control among separate units.
- MM-paths always represent feasible execution paths, and these paths cross unit boundaries.
- There is no correspondence between MM-paths and DDpaths
- The intersection of a module execution path with a unit is the analog of a slice with respect to the MM-path function

MM-Path Example

- Source nodes
- Sink nodes

Module Execution Paths

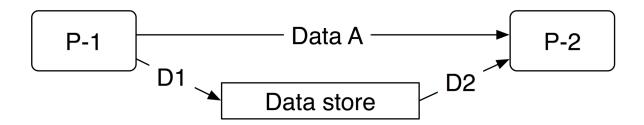
MM-path



MM-path Graph

- Given a set of units their MM-path graph is the directed graph in which
 - Nodes are module execution paths
 - Edges correspond to messages and returns from one unit to another
- The definition is with respect to a set of units
 - It directly supports composition of units and compositionbased integration testing

MM-path graph example


Solid lines indicate messages (calls)

Dashed lines indicate returns from calls

MM-path guidelines

- How long, or deep, is an MM-path? What determines the end points?
 - Message quiescence
 - Occurs when a unit that sends no messages is reached
 - Module C in the example
 - Data quiescence
 - Occurs when a sequence of processing ends in the creation of stored data that is not immediately used (path D1 and D2)

Quiescence points are natural endpoints for MM-paths

MM-Path metric

- How many MM-paths are sufficient to test a system
 - Should cover all source-to-sink paths in the set of units
- What about loops?
 - Use condensation graphs to get directed acyclic graphs
 - Avoids an excessive number of paths

Pros and cons of path-based integration

- Hybrid of functional and structural testing
 - Functional represent actions with input and output
 - Structural how they are identified
- Avoids pitfall of structural testing (???)
- Fairly seamless union with system testing
- Path-based integration is closely coupled with actual system behaviour
 - Works well with OO testing
- No need for stub and driver development
- There is a significant effort involved in identifying MM-paths

MM-path compared to other methods

Strategy	Ability to test interfaces	Ability to test co-functionality	Fault isolation resolution
Functional decomposition	Acceptable, can be deceptive	Limited to pairs of units	Good to faulty unit
Call-graph	Acceptable	Limited to pairs of units	Good to faulty unit
MM-path	Excellent	Complete	Excellent to unit path level