!'- Integration Testing

Chapter 13

Integration Testing

= Test the interfaces and interactions among separately tested
units
= Three different approaches
= Based on functional decomposition
= Based on call graphs
= Based on paths

INT-2

Functional Decomposition

= Functional Decomposition
= Create a functional hierarchy for the software

= Problem is broken up into independent task units, or
functions

= Units can be run either

» Sequentially and in a synchronous call-reply manner
« Or simultaneously on different processors

= Used during planning, analysis and design

INT-3

i Example functional decomposition

0
o NG €
H QOB 668 ¢ F f P

BJ6103610102010 CHCRC RO RN R

INT-4

Decomposition-based integration

= Four strategies
= Top-down
= Bottom-up
= Sandwich
= Big bang

INT-5

Top-Down Integration

= Top-down integration strategy

= Focuses on testing the top layer or the controlling
subsystem first (i.e. the main, or the root of the call tree)

= The general process in top-down integration strategy is

= To gradually add more subsystems that are

referenced/required by the already tested subsystems when
testing the application

= Do this until all subsystems are incorporated into the test

INT-6

Top-Down Integration

= Special code is needed to do the testing

= leststub

= A program or a method that simulates the input-output
functionality of a missing subsystem by answering to the
decomposition sequence of the calling subsystem and
returning back simulated data

INT-7

i Top-Down integration example

Top Subtree
(Sessions 1-4)

AN
A0 T oo

Second Level Subtree

(Sessions 12-15)
[P
STEOSEHOD

Botom Level Subtree
(Sessions 38-42)

A~
%Q%E ° e

INT-8

Top-Down integration issues

= Writing stubs can be difficult
= Especially when parameter passing is complex.
= Stubs must allow all possible conditions to be tested

= Possibly a very large number of stubs may be required
= Especially if the lowest level of the system contains many
functional units
= One solution to avoid too many stubs
= Modified top-down testing strategy

= Test each layer of the system decomposition individually
before merging the layers

= Disadvantage of modified top-down testing
=« Both, stubs and drivers are needed

INT-9

Bottom-Up integration

= Bottom-Up integration strategy
= Focuses on testing the units at the lowest levels first

= Gradually includes the subsystems that reference/require
the previously tested subsystems

= Do until all subsystems are included in the testing

= Special driver code is needed to do the testing

= The driver is a specialized routine that passes test cases to
a subsystem

= Subsystem is not everything below current root module,
but a sub-tree down to the leaf level

INT-10

Bottom-up integration example

Bottom Level Subtree
(Sessions 13-17)

Second Level Subtree
(Sessions 25-28)

Top Subtree
(Sessions 29-32)

INT-11

Bottom-Up Integration Issues

Not an optimal strategy for functionally decomposed systems
= Tests the most important subsystem (user interface) last

More useful for integrating object-oriented systems
Drivers may be more complicated than stubs

Less drivers than stubs are typically required

INT-12

Sandwich Integration

Combines top-down strategy with bottom-up strategy
Less stub and driver development effort
Added difficulty in fault isolation

Doing big-bang testing on sub-trees

INT-13

Sandwich integration example

INT-14

Integration test metrics

= The number of integration tests for a decomposition tree is
the following

Sessions = nodes — leaves + edges

= For SATM have 42 integration test sessions, which
correspond to 42 separate sets of test cases

= For top-down integration nodes — 1 stubs are needed

= For bottom-up integration nodes — leaves drivers are
needed

= For SATM need 32 stubs and 10 drivers

INT-15

Call Graph-Based Integration

= The basic idea is to use the call graph instead of the
decomposition tree

= The call graph is a directed, labeled graph
= Vertices are program units; e.g. methods
= A directed edge joins calling vertex to the called vertex
= Adjacency matrix is also used

= Do not scale well, although some insights are useful
« Nodes of high degree are critical

INT-16

i SATM call graph example

& (1) Look a adjacency
(D matrix p204

29)

29 (22

® (16)

W O,

(13 (13)
(De—-0—01 (9 @

Y
G ® ® @ @
INT-17

Call graph integration strategies

= Two types of call graph based integration testing
= Pair-wise Integration Testing
= Neighborhood Integration Testing

INT-18

Pair-Wise Integration

= The idea behind Pair-Wise integration testing
= Eliminate need for developing stubs / drivers
= Use actual code instead of stubs/drivers

= In order not to deteriorate the process to a big-bang strategy

= Restrict a testing session to just a pair of units in the call
graph

= Results in one integration test session for each edge in the
call graph

INT-19

i Pair-wise integration session example

5

7

20

7 @
o 72 /N
(10

v o
A—t@ n @ | X

/(\@
- 5 O é\@

INT-20

Neighbourhood integration

= The neighbourhood of a node in a graph

= The set of nodes that are one edge away from the given
node

= In adirected graph

= All the immediate predecessor nodes and all the immediate
successor nodes of a given node

= Neighborhood Integration Testing
= Reduces the number of test sessions
= Fault isolation is more difficult

INT-21

i Neighbourhood integration example

A Neighbourhoods

, ' for nodes 16 & 26

W@@Q@
= (&)
RS

?
\

Y
®

INT-22

Pros and Cons of Call-Graph Integration

Aim to eliminate / reduce the need for drivers / stubs
= Development effort is a drawback

Closer to a build sequence
Neighborhoods can be combined to create “villages”

Suffer from fault isolation problems
= Specially for large neighborhoods

INT-23

Pros and Cons of Call-Graph Integration — 2

Redundancy
= Nodes can appear in several neighborhoods

Assumes that correct behaviour follows from correct units and
correct interfaces

= Not always the case

Call-graph integration is well suited to devising a sequence of
builds with which to implement a system

INT-24

Path-Based Integration

= Motivation
= Combine structural and behavioral type of testing for
integration testing as we did for unit testing
= Basic idea
= Focus on interactions among system units
= Rather than merely to test interfaces among separately
developed and tested units

= Interface-based testing is structural while interaction-based is
behavioral

INT-25

Extended Concepts — 1

= Source node

= A program statement fragment at which program execution
begins or resumes.

« For example the first “begin” statement in a program.

« Also, immediately after nodes that transfer control to
other units.

= Sink node

= A statement fragment at which program execution
terminates.

« The final “end” in a program as well as statements that
transfer control to other units.

INT-26

Extended Concepts — 2

= Module execution path
= A sequence of statements that begins with a source node
and ends with a sink node with no intervening sink nodes.
= Message

= A programming language mechanism by which one unit
transfers control to another unit.

= Usually interpreted as subroutine invocations

= The unit which receives the message always returns control
to the message source.

INT-27

MM-Path

An interleaved sequence of module execution paths and
messages.

Describes sequences of module execution paths that include
transfers of control among separate units.

MM-paths always represent feasible execution paths, and
these paths cross unit boundaries.

There is no correspondence between MM-paths and DD-
paths

The intersection of a module execution path with a unit is the
analog of a slice with respect to the MM-path function

INT-28

i MM-Path Example

~

)
vy

L =N

/

/

Q Source nodes
Q Sink nodes

Module Execution Paths

MEP(B,2) = <3, 4>
MEP(B,1) = <1, 2>

MM-path

MEP(A,1) = <1, 2, 3, 6>
MEP(A,2) = <1, 2, 4>
MEP(A,3) = <5, 6>

MEP(C,2) = <1, 3, 4, 5>
MEP(C,2) = <1, 3, 4, 5>

INT-29

MM-path Graph

= Given a set of units their MM-path graph is the directed graph
in which
= Nodes are module execution paths
= Edges correspond to messages and returns from one unit
to another
= The definition is with respect to a set of units

= It directly supports composition of units and composition-
based integration testing

INT-30

i MM-path graph example

(MEP(A,2)
MEP(B, 1))\;""5"(0 ,2)

(MEP(A,1))

MEP(C,1),

{MEP(B,2)J- -

[MEP(A,3)}¢--"""

Solid lines indicate messages (calls)
Dashed lines indicate returns from calls

INT-31

MM-path guidelines

= How long, or deep, is an MM-path? What determines the end
points?
= Message quiescence
» Occurs when a unit that sends no messages is reached
Module C in the example
= Data quiescence

» Occurs when a sequence of processing ends in the
creation of stored data that is not immediately used
(path D1 and D2)

[P-1]\ Data A /j P-2 }

D1 D2
™ Datastore |~

= Quiescence points are natural endpoints for MM-paths

INT-32

MM-Path metric

= How many MM-paths are sufficient to test a system
= Should cover all source-to-sink paths in the set of units

= What about loops?

= Use condensation graphs to get directed acyclic graphs
= Avoids an excessive number of paths

INT-33

Pros and cons of path-based integration

Hybrid of functional and structural testing
= Functional — represent actions with input and output
« Structural — how they are identified

Avoids pitfall of structural testing (?77?)
Fairly seamless union with system testing

Path-based integration is closely coupled with actual system
behaviour

= Works well with OO testing
No need for stub and driver development

There is a significant effort involved in identifying MM-paths

INT-34

MM-path compared to other methods

Strategy Ability to test Ability to test Fault isolation
interfaces co-functionality | resolution
Functional Acceptable, can | Limited to pairs | Good to faulty

decomposition

be deceptive

of units

unit

Call-graph Acceptable Limited to pairs | Good to faulty
of units unit
MM-path Excellent Complete Excellent to unit

path level

INT-35

