State-Based Testing
Part C — Test Cases

Generating test cases for complex behaviour

Reference: Robert V. Binder
Testing Object-Oriented Systems: Models, Patterns, and Tools
Addison-Wesley, 2000, Chapter 7



Test Strategies

Exhaustive

All Transitions
= Every transition executed at least once
= EXercises all transitions, states and actions
= Cannot show incorrect state is a result
= Difficult to find sneak paths

All n-transition sequences
= Can find some incorrect and corrupt states

All round trip paths
= Generated by N+ test strategy

STC-2



N+ Test Strategy Overview

= The N+ Test strategy

Encompasses UML state models

Testing considerations unique to OO implementations

It uses a flattened model

All implicit transitions are exercised to reveal sneak paths

Relies on an the implementation to properly report resultant
state

More powerful than simpler state-based strategies
« Requires more analysis
« Has larger test suites
» Look at cost/benefit tradeoff

STC-3



N+ Coverage

= N+ coverage reveals
= All state control faults
= All sneak paths
= Many corrupt state bugs
= Many super-class/sub-class integration bugs
= If more than one o state reveals faults on each one
= All transitions to the o states

= Can suggest presence of trap doors when used with
program text coverage analyzer

STC-4



The N+ Test Strategy Development

Develop a state-based model of the system
= Validate the model using the checklists
= Flatten the model — Expand the statechart
= Develop the response matrix

Generate the round-trip path test cases
Generate the sneak path test cases

Sensitize the transitions in each test case

= Find input values to satisfy guards for the transitions in the
event path

= Similar to finding path conditions in path testing

STC-5



The 3-player game example

= We will use an extension of the 2-player game as an example

= There is now a third player that may win any of the volleys

STC-6



p1_WinsVolley( )

{this.p1_Score( ) < 20}/

this.p1AddPoint( )
simulateVolley( )

ThreePlayerGame( )/TwoPlayerGame( )

(@

p1_Start( )/
simulateVoiley( )

j

p3_Start( )/

@me Started ]
L _J

simulateVolley( )

p1_WinsVolley( )/
simulateVolley( )

p2_Start( )/
simulateVolley( )

p2_WinsVolley( )
[this.p2_Score( ) < 20)/
this.p2AddPoint( )
simulateVolley( )

Flattened state model

p3_WinsVolley( )
[this.p3_Score( ) < 20)/
this.p3AddPoint( )
simulateVolley( )

—

p1_WinsVolley( )

[this.p1_Score( ) == 20}/

this.p1AddPoint( )

pl1_IsWinner( )/
return TRUE;

L R

~()

~()

~()

¢ p1_WinsVolley( )/ % p2_WinsVolley( )/ |
| Y___ simulateVolley( ) . _simulateVolley( ) v
Player 1 |« ( Player 2 Player 3 k__
Served J Served | %L Served
p2_WinsVoliey( )/ p3_WinsVolley( )/
simulateVolley( ) simulateVolley( ) p3_WinsVoliey( )
[this.p3_Score( ) == 20}/
this.p3AddPoaint( )
p3_WinsVolley( )
simulateVolley( ) p2_WinsVolley( )
[this.p2_Score( ) == 20)/
this.p1AddPoint( )
\ 4 p2_lsWinner( )/ \ 4 \ 4 p3_isWinner( )/
Player 1 return TRUE; Player 2 j Player 3 J return TRUE;
Won “—"( - Won Won <




Response Matrix

ctor 6 6 6 6 6 6 6 6
[ p1_start - 4 4 4 4 4 4 6

p2_Start v 4 4 4 4 4 4 6
p3_Start v 4 4 4 4 4 4 6
p1_WinsVolley | p1_score <20 | p1_Score == 20

DC DC - v v B 4 4 6

F F 6

F 1§ v

T F *

T T
p2_WinsVolley | p2_score < 20| p2_Score == 20

DC DC 4 v v 4 4 4 6

F F 6 N

F T v S L, e

T - s S S

T T e TP
p3_WinsVolley | p3_score < 20 | p3_Score == 20

DC DC 4 v v 4 4 4 6

E F 6

F T v

i g E v

3 T
p1_isWinner v v v v v v v 6
p2_isWinner v v v v v v v 6
p3_isWinner v v v v v v v 6
Other Public v v v v v v v 6
R T = ”3 = - . R o 4 v 6

STC-8



Round-Trip Path Tree

Exercise all transitions and loops on every possible alpha-
omega path at least once

Root: Initial state — use a state with multiple constructors

Edge for each transition

Stop if the resultant state is already in the tree or is a final
state

STC-9



Round-Trip Path Tree — 2

= Guards

= One transition for each variant that evaluates to True

=« Simple Boolean expression containing only logical and
— one test case

= Compound expression containing at least one or — one
test transition for each predicate combination giving
true

= Specifies a counter (counter = 1000) — need to repeat
transition until the count is satisfied

= Test at least one false combination

= Tests to cover each guard's false variants are developed for
the sneak attack tests

»« Recall variant testing for decision tables — there are
others as well

STC-10



Transition tree for
the 3-player game

1

QOUONOODdWN=

-—h

11
12
13
14
15
16
17

ThreePlayerGame( )

p1_Start( )

p2_Start( )

p3_Start( )

p1_WinsVolley( )

p1_WinsVolley( )[this.p1_Score( ) < 20]
p1_WinsVolley( ) [this.p1_Score( ) == 20]
p2_WinsVolley( )

p2_WinsVolley( ) [this.p2_Score( ) < 20]
p2_WinsVolley( ) [this.p2_Score( ) == 20]

8 Player 2 Served

11

Player 1 Served *7

Player 3 Served

17 omega
Player 1 Won 14
Player 1 Won

*6 Player 1 Served

*9 Player 2 Served

3 11 Player 3 Served

omega
Player 2 Won 15
Player 2 Won

5 Player 1 Served

12 Player 3 Served
17 omega
13 Player 3 Won 16

Player 3 Served 8 Player 3 Won

Player 2 Served

5\ Player 1 Served

p3_WinsVolley( )

p3_WinsVolley( ) [this.p3_Score( )} < 20]
p3_WinsVolley( ) [this.p3_Score( ) == 20]
p1_IsWinner()

p2_IsWinner()

p3_IsWinner()

~()



Generated test
cases

GameStarted

1.1 ThreePlayerGame

1.2 p1_start simulateVolley Player 1 Served
1.3 p2 WmsVoIIey simulateVolley Player 2 Served
2.1 ThreePIayerGame GameStarted
2.2 p1_start simulateVolley Player 1 Served
2 3 p3 WlnsVoIIey simulateVolley Player 3 Served
3 1 ThreePlayerGame GameStarted
32 pl_start simulateVolley Player 1 Served
3.3 * * Player 1 Served
3.4 p1_WinsVolley p1_Score == 20 Player 1 Won
3.5 dtor omega

4.1 ThreePIayerGame GameStarted
4.2 pl1_start simutlateVolley Player 1 Served
4.3 * * Player 1 Served
4.4 p1_WinsVolley p1_Score == 20 Player 1 Won
4.5 p1 IsWinner return TRUE Player 1 Won
5.1 ThreePIayerGame GameStarted
5.2 p1_start simulateVolley Player 1 Served
5.3 * * Player 1 Served
5.4 p1 WrnsVoIIey p1_Score == 19 simulateVolley Player 1 Served
6.1 ThreePIayerGame GameStarted
6.2 p2_start simulateVolley Player 2 Served
6.3 * * Player 2 Served
6.4 p2_WinsVolley p2_Score == 19 simulateVolley Player 2 Served
7.1 ThreePlayerGame GameStarted
7.2 p2_start simulateVolley Player 2 Served
7.3 p3_WinsVolley simulateVolley Player 3 Served
8.1 ThreePlayerGame GameStarted
8.2 p2_start simulateVoliey Player 2 Served
8.3 * * Player 2 Served
8.4 p2_WinsVolley p2_Score == 20 Player 2 Won
8.5 dtor omega




Sneak path testing

Look for lllegal transitions and evading guards
Transition tree tests explicit behaviour
We need to test each state’s illegal events

A test case for each non-checked, non-excluded transition
cell in the response matrix

Confirm that the actual response matches the specified
response

STC-13



Testing one sneak path

Put IUT into the corresponding state

= May need to have a special built-in test method, as getting
there may take too long or be unstable

= Can use any debugged test sequences that reach the state
« Be careful if there are changes in the test suite

Apply the illegal event by sending a message or forcing the
virtual machine to generate the desired event

Check that the actual response matches the specified
response

Check that the resultant state is unchanged
= Sometimes a new concrete state is acceptable

STC-14



Sneak Path Test Suite

16.0  ThreePlayerGame Game Started ThreePlayerGame 6 Abend

17.0  ThreePlayerGame Game Started p1_WinsVolley 4 IllegalEventException
18.0  ThreePlayerGame Game Started p2_WinsVolley 4 lllegalEventException
19.0 ThreePIayerGame Game Started p3 WmsVoIIey 4 lllegalEventException

R R R R R R RSN
20.0 10.0 Player1 Served ThreePIayerGame 6 Abend
21.0 5.0 Player 1 Served  p1_start 4 lllegalEventException
220 10.0 Player 1 Served  p2_start 4 lllegalEventException
23.0 50 Player 1 Served  p3_start 4 lllegalEventException
240 1.0 Player 2 Served ThreePIayerGame 6 Abend

250 6.0 Player 2 Served  p1_start 4 lllegalEventException
26.0 1.0 Player 2 Served  p2_start 4 lllegalEventException
27.0 6.0 Player 2 Served  p3_start 4 IttegalEventException
280 7.0 Player 3 Served  ThreePlayerGame 6 Abend

290 20 Player 3 Served pl1_start 4 lllegalEventException

LEE SRR U S e

STC-15



Checking Resultant state

= State reporter
= Can evaluate state invariant to determine state of object

= Implement assertion functions
bool isGameStarted() { ... }
« After each event appropriate state reporter is asserted

= Test repetition — good for corrupt states
= Repeat test and compare results
= Corrupt states may not give the same result
= Not as reliable as state reporter method

= State revealing signatures

= ldentify and determine a signature sequence
»« A sequence of output events that are unique for the state
« Analyze specification

= EXxpensive and difficult

STC-16



Major test strategies in increasing power

Piecewise
= Every state, every event, every action at least once
= Does not correspond to state model

All transitions — minimum acceptable
= Every transition is exercised at least once

All transition k-tuples

= EXxercise every transition sequence of k events at least once
« 1-tuple is equivalent to all transitions

All round-trip paths
= N+ coverage

M-length signature
= Used for opaque systems — cannot determine current state

Exhaustive

STC-17



