
State-Based Testing
Part C – Test Cases

Generating test cases for complex behaviour

Reference: Robert V. Binder
Testing Object-Oriented Systems: Models, Patterns, and Tools
Addison-Wesley, 2000, Chapter 7

STC–2

Test Strategies

 Exhaustive
 All Transitions

 Every transition executed at least once
 Exercises all transitions, states and actions
 Cannot show incorrect state is a result
 Difficult to find sneak paths

 All n-transition sequences
 Can find some incorrect and corrupt states

 All round trip paths
 Generated by N+ test strategy

STC–3

N+ Test Strategy Overview

 The N+ Test strategy
 Encompasses UML state models
 Testing considerations unique to OO implementations
 It uses a flattened model
 All implicit transitions are exercised to reveal sneak paths
 Relies on an the implementation to properly report resultant

state
 More powerful than simpler state-based strategies

 Requires more analysis
 Has larger test suites
 Look at cost/benefit tradeoff

STC–4

N+ Coverage

 N+ coverage reveals
 All state control faults
 All sneak paths
 Many corrupt state bugs
 Many super-class/sub-class integration bugs
 If more than one α state reveals faults on each one
 All transitions to the ω states
 Can suggest presence of trap doors when used with

program text coverage analyzer

STC–5

The N+ Test Strategy Development

 Develop a state-based model of the system
 Validate the model using the checklists
 Flatten the model – Expand the statechart
 Develop the response matrix

 Generate the round-trip path test cases
 Generate the sneak path test cases
 Sensitize the transitions in each test case

 Find input values to satisfy guards for the transitions in the
event path

 Similar to finding path conditions in path testing

STC–6

The 3-player game example

 We will use an extension of the 2-player game as an example
 There is now a third player that may win any of the volleys

Transition Diagram Flattened state model

STC–8

Response Matrix

STC–9

Round-Trip Path Tree

 Exercise all transitions and loops on every possible alpha-
omega path at least once

 Root: Initial state – use α state with multiple constructors

 Edge for each transition
 Stop if the resultant state is already in the tree or is a final

state

STC–10

Round-Trip Path Tree – 2

 Guards
 One transition for each variant that evaluates to True

 Simple Boolean expression containing only logical and
– one test case

 Compound expression containing at least one or – one
test transition for each predicate combination giving
true

 Specifies a counter (counter ≥ 1000) – need to repeat
transition until the count is satisfied

 Test at least one false combination
 Tests to cover each guard's false variants are developed for

the sneak attack tests
 Recall variant testing for decision tables – there are

others as well

STC–11

Transition tree for
the 3-player game

STC–12

Generated test
cases

STC–13

Sneak path testing

 Look for Illegal transitions and evading guards
 Transition tree tests explicit behaviour
 We need to test each state’s illegal events
 A test case for each non-checked, non-excluded transition

cell in the response matrix
 Confirm that the actual response matches the specified

response

STC–14

Testing one sneak path

 Put IUT into the corresponding state
 May need to have a special built-in test method, as getting

there may take too long or be unstable
 Can use any debugged test sequences that reach the state

 Be careful if there are changes in the test suite

 Apply the illegal event by sending a message or forcing the
virtual machine to generate the desired event

 Check that the actual response matches the specified
response

 Check that the resultant state is unchanged
 Sometimes a new concrete state is acceptable

STC–15

Sneak Path Test Suite

STC–16

Checking Resultant state

 State reporter
 Can evaluate state invariant to determine state of object
 Implement assertion functions

bool isGameStarted() { … }
 After each event appropriate state reporter is asserted

 Test repetition – good for corrupt states
 Repeat test and compare results
 Corrupt states may not give the same result
 Not as reliable as state reporter method

 State revealing signatures
 Identify and determine a signature sequence

 A sequence of output events that are unique for the state
 Analyze specification

 Expensive and difficult

STC–17

Major test strategies in increasing power

 Piecewise
 Every state, every event, every action at least once
 Does not correspond to state model

 All transitions – minimum acceptable
 Every transition is exercised at least once

 All transition k-tuples
 Exercise every transition sequence of k events at least once

 1-tuple is equivalent to all transitions

 All round-trip paths
 N+ coverage

 M-length signature
 Used for opaque systems – cannot determine current state

 Exhaustive

