State-Based Testing
Part B — Error Identification

Generating test cases for complex behaviour

Reference: Robert V. Binder
Testing Object-Oriented Systems: Models, Patterns, and Tools
Addison-Wesley, 2000, Chapter 7

Expanding the statechart

Statecharts are great for communication, reducing clutter etc.

They might hide subtle bugs
= e.g. entering a sub-state rather than a super-state

We need to expand them to full transition diagrams for testing
purposes

= Expansion makes implicit transitions explicit, so they are
not lost

= Expansion is a flat view

= Includes everything from inheritance in OO and sub-
states in statecharts

An automatable process

SEI-2

Unspecified Event/State Pairs

State machine models will not include all events for all states

Implicit transitions may be illegal, ignored, or a specification
omission

Accepted illegal events lead to bugs called sneak paths

For testing purposes, we cannot ignore implicit behaviour
= Develop a Response Matrix

SEI-3

Example statechart

1 A
4 [(i '= x) && (k < max)]

dtor
la [x 1==0] 2 [x =0]
f h dtor
B
y 1 l
2

T 3[i>1000] Y

5[(> 10) || (k == max) || isReset() | C dtor
g
3 [i <=1000]

SEI-4

Response

matrix

Event 1
Event 2
v 2
Event3 | i <= 1000
DC 2
Off 2 v/
2 v
Event 4
2
1
2
2
Event 5 i>10 k == max isReset()
DC DC DC 5
F F F 5
F F T v
F T F v
F T T v/
T F F v
T F T v
T T F v
T T T v
dtor - o i v v/

Key: T = true, F = false, DC = don't care; for Action codes, see Table 7.3

Not applicable X Excluded] Explicitly specified transition

Possible responses to illegal events

TABLE7.3 Response Codes for lllegal Events

0 Accept Perform the explicitly specified transition

1 Queue Place the illegal event in a queue for subsequent evaluation
and ignore

2 Ignore No action or state change is to be produced, no error is re-

turned, no exception raised
Flag Return a nonzero error code
Reject Raise an I11egalEventException
Mute Disable the source of the event and ignore

Abend Invoke abnormal termination services (e.g., core dump) and
halt the process

o O AW

SEI-6

Designing responses to illegal events

= Abstract state should not change
= Concrete state may change due to exception handling

= lllegal event design question

= Handle with defensive programming
» Defensive systems

= Handle with precondition contracts
« Cooperative systems

SEI-7

Designing responses to illegal events — 2

= Possible responses
= Raise exception
= Treat message as a hoop
= Attempt error recovery
= Invoke abnormal termination

= [ester needs to decide expected responses so actual
responses can be evaluated

SEI-8

State model validation

= A state model must be complete, consistent, and correct
before it is used to generate test cases

= We will look at four validation checklists
= Structure checklist
= State name checklist
= Guarded transition checklist
= Robustness checklist

SEI-9

Structure checklist

There is an initial state with only outbound transitions

There is a final state with only inbound transitions (if not,
explicit reason is needed)

No equivalent states
Every state is reachable from the initial state
The final state is reachable from all states

Every defined event and every defined action appears in at
least one transition

SEI-10

Structure checklist

= Except for the initial and final states, every state has at least
one incoming and one outgoing transition

= [he events accepted in a particular state are unigue or
differentiated by mutually exclusive guards

= Complete specification: For every state, every event is
accepted or rejected (either explicitly or implicitly)

SEI-11

State name checklist

Poor names are often indications of incomplete or incorrect
design

Names must be meaningful in the context of the application

If a state is not necessary, leave it out
= “Wait states” are often superfluous

State names should be passive

Adjectives are best, past participles are OK

SEI-12

Guarded transition checklist

The entire range of truth values for a particular event is
covered

Each guard is mutually exclusive of all other guards
Guard variables are visible

Guards with three or more variables are modeled with a
decision table

The evaluation of a guard does not cause side effects

SEI-13

Robustness checklist

There is an explicit spec for an error-nandling or exception-
handling mechanism for implicitly rejected events

lllegal events do not corrupt the machine (preserve the last
good state, reset to a valid state, or self-destruct safely)

Actions have no side effects on the resultant state

Explicit exception, error logging, and recovery mechanisms
are specified for contract violations

SEI-14

Fault model for state machines

= Control faults: An incorrect sequence of events is accepted,
or an incorrect sequence of outputs is produced

= Missing transition

= Incorrect transition

= Missing action

= Incorrect action

= Sneak path

= Corrupt state

» lllegal message failure

=« Trap door — undefined message/events

SEI-15

Missing transition

p1_Start()/

p1_WinsVolley()
[this.p1_Score() < 20)/
this.p1AddPoint()
simulateVolley()

l 4

p2_Start()/

simulateVolley() i simulateVolley()
—[Game Started }—

p2_WinsVolley()
[this.p2_Score()} < 20/
this.p2AddPoint()

Player 1
Served

p1_WinsVolley()/
simulateVolley()

simulateVolley()

p1_WinsVolley()

[this.p1_Score() == 20}/

this.p1AddPoint()

Y

f ----------- SO ’[

p2_WinsVolley()/
simulateVolley()

p2_WinsVolley()
[this.p2_Score() == 20}/
this.p1AddPoint()

A 4

p1_lsWinner()/ » I

Won

Player 1 } [Player 2

Won

return TRUE; | [

p2_lsWinner()/

| return TRUE;

SEI-16

Incorrect transition

p1_Start()/

p1_WinsVolley()
[this.p1_Score() < 20)/
this.p1AddPoint()
simulateVoliey()

I /

p2_Start()/
simulateVolley()

simulateVolley() l
A[Game Started [Z—

simulateVolley()

[this.p2_Score() < 20)/

this.p2AddPoint()
simulateVolley()

A4 1

p1_WinsVolley()/ : ‘ p2_WinsVolley()

p1_WinsVolley()
[this.p1_Score() == 20}/
this.p1AddPoint()

\ 4

Player 1]4 -----------------------
Served]
p2_WinsVolley()/

Player 2

Served

simulateVolley()

v

p2_WinsVolley()
[this.p2_Score()
this.p1AddPoint(

== 20)/
)

p1_IsWinner()/ 5 ‘ Won

Won

Player 1 Player 2
p2_lsWinner()/

return TRUE; [7

L | return TRUE;

SEI-17

Missing action

p1_Start()/

l

p1_WinsVolley()

[this.p1_Score() < 20}/
this.p1AddPoint()

simulateVolley()

g

p2_Start()/

simulateVoliey{ simulateVolley()
_]———[Game Started]—‘

p2_WinsVolley()
[this.p2_Score() < 20)/
this.p2AddPoint()
simulateVolley()

p1_WinsVolley()
{this.p1_Score() == 20}/
this.p1AddPoint()

p1_IsWinner()/
return TRUE;

== 20)/
)

+ p1_WinsVolley()/
! simulateVolley() - y |
Player 1]4 Player 2
Served J o Served
p2_WinsVolley()/
simulateVolley()
p2_WinsVolley()
[this.p2_Score()
this.p1AddPoint(
Y h 4

Player 1 Player 2
Won Won

L

I

p2_IsWinner()/
return TRUE;

SEI-18

Incorrect action

p1_Start()/

simulateVolley() simulateVolley()
Game Started '

p1_WinsVolley()
[this.p1_Score() < 20}/
this.p1AddPoint()
simulateVolley()

| Y

l

) Nin OlE

this.p1AddPoint

Player 1
Served

p2_Start()/

p2_WinsVolley()
[this.p2_Score() < 20)/
this.p2AddPoint()
simulateVolley()

\ 4 I

1

p1_WinsVolley()
[this.p1_Score()
(

this.p1AddPoint()

p1_lsWinner()/ » l
I

return TRUE;

= 20}/

\ 4

simulateVolley()

Player 2

| : »
p2_WinsVolley()/

Served

p2_WinsVolley()
[this.p2_Score()
this.p1AddPoint(

= 20)/

)
/

Player 1 Player 2
Won Won p2_IsWinner()/

L | return TRUE;

SEI-19

Sneak path

p1_Start()/ l p2_Start()/
S|mulateVoIIey simulateVolley()
Game Started
p1_WinsVolley() p2_WinsVolley()
[this.p1_Score() < 20}/ [this.p2_Score() < 20)/
this.p1AddPoint() this.p2AddPoint()
simulateVolley() o1_WinsVolley()/ simulateVolley()
B simulateVolley() . \ A
,[Player 1 14 Player 2]4
Served > Served e ;
7 p2_WinsVolley()/ © [p2_Start()] :
simulateVolley() :
p1_WinsVolley() p2_WinsVolley()
[this.p1_Score() == 20)/ [this.p2_Score() == 20}/
this.p1AddPoint() v vthis.p1AddPoint()

Player 1 Player 2
p1_IsWinner()/ Won Won p2_lsWinner()/
| T

return TRUE; T | return TRUE:

SEI-20

Corrupt state

p1_Start()/ p2_Start()/
simulate\oll simulateVoll
A—eﬂ[Game Staned}—)
p1_Wins\blley() p2_Wins\blley()
[this.p1_Score() < 20] [this.p2_Score() < 20],
this.p1AddPoint() this.p2AddPoint()
SlmU|ate\Ib|'GY() p1_W|nS\b||ey()/ SlmulateVOIIGy()
l ¥ simulateVolley() \ A
Player 1 14 Player 2
o >{ Served _ PL Served
; _ — p2_Wins\blley()/
. p1_Wins\blley() - simulateVolley()
 [this.p1_Score() ==20} p2_Wins\blley()
 this.p1AddPoint() 5 [this.p2_Score() == 20}/
.......... S— @ this.p1AddPoint()
. 8-(@I"B+®{ \ 4 \ 4
SR " Player 1 } [Player 2
— er(Y [‘ Won Won i . p2_lsWinner()/
reeumTRUE; L | L retum TRUE:

SEI-21

Sneak path to corrupt state

p1_Start()/

p1_WinsVolley()
[this.p1_Score() < 20}/
this.p1AddPoint()
simulateVolley()

I 4

p2_Start()/

p1_WinsVolley()/

simulateVolle l simulateVolley(
4ﬂ{ Game StartedJ—)

p2_WinsVolley()
[this.p2_Score() < 20)/
this.p2AddPoint()
simulateVolley()

Y __ |

Player 1
Served

simulateVolie
]¢ Y()(
»

Player 2

p1_WinsVolley()

[this.p1_Score() == 20)/

this.p1AddPoint()

. p2_Wins\Volley()/
simulateVoliey()

A 4

Served]<| p2_Start(| |

p2_WinsVolley()
[this.p2_Score() == 20} :
this.p1AddPoint() ... Y. ‘

 XDEADBEEF

p1_lsWinner()/ ’l

returnTRUE; L 1

Player 1 Player2 | s ;
Won Won p2_IsWinner()/

LI return TRUE;

SEI-22

Trap door

p1_Start() l p2_Start()/
sumulateVolIey() simulateVolley()
_[Game StartedJ—
p1_WinsVolley() p2_WinsVolley()
[this.p1_Score() < 20)/ [this.p2_Score() < 20)/
this.p1AddPoint() this.pzAddPoint()
simulateVolley() ! p1_WinsVolley()/ simulateVolley()
1

simulateVolley() A A
Player 1]4 (Player2
el |)[Served
p2_WinsVolley()/
simulateVolley()

p1_WinsVolley() p2_WinsVolley()
[this.p1_Score() == 20}/ [this.p2_Score() == 20}/
this.p1AddPoint() this.p1AddPoint()

v y
. Player 1 Player 2
p1_IsWinner()/ Won wWon p2_lsWinner()/

return TRUE;, | T A [return TRUE;

SEI-23

