
State-Based Testing
Part A – Modeling states

Generating test cases for complex behaviour

Reference: Robert V. Binder
Testing Object-Oriented Systems: Models, Patterns, and Tools
Addison-Wesley, 2000, Chapter 7

SM–2

Motivation

 We are interested in testing the behaviour of many different
types of systems, including event-driven software systems

 Interaction with GUI systems can follow a large number of
paths

 State machines can model event-driven behaviour
 If we can express the system under test as a state machine,

we can generate test cases for its behaviour

SM–3

Question 1

 What is a state machine?

SM–4

A state machine is …

 A system whose output is determined by both current state
and past input

 Previous inputs are represented in the current state
 State-based behaviour

 Identical inputs are not always accepted
 Depends upon the state

 When accepted, they may produce different outputs
 Depends upon the state

SM–5

Building blocks of a state machine

 State
 An abstraction that summarizes past inputs, and

determines behaviour on subsequent inputs

 Transition
 An allowable two-state sequence. Caused by an event

 Event
 An input or a time interval

 Action
 The output that follows an event

SM–6

State machine behaviour

1. Begin in the initial state
2. Wait for an event
3. An event comes in

1. If not accepted in the current state, ignore
2. If accepted, a transition fires, output is produced (if any),

the resultant state of the transition becomes the current
state

4. Repeat from step 2 unless the current state is the final
state

SM–7

State machine properties

 How events are generated is not part of the model
 Transitions fire one at a time
 The machine can be in only one state at a time
 The current state cannot change except by a defined

transition
 States, events, transitions, actions cannot be added during

execution

SM–8

State machine properties

 Algorithms for output creation are not part of the model
 The firing of a transition does not consume any amount of

time
 An event with no beginning or ending, which implies

duration

The challenge
How to model the behaviour of a given

system using a state machine?

SM–9

Question 2

 What is a state transition diagram?

SM–10

State transition diagrams

SM–11

Guarded transitions

 The previous model is ambiguous, e.g. there are two possible
reactions to push and pop in the Loaded state

 Guards can be added to transitions
 A guard is a predicate associated with the event
 A guarded transition cannot fire unless the guard predicate

evaluates to true

SM–12

Guarded transitions

SM–13

Limitations of the basic model

 Limited scalability
 Even with the best tools available, diagrams with 20 states

or more are unreadable

 Concurrency cannot be modeled
 Different processes can be modeled with different state

machines, but the interactions between them cannot

 Not specific enough for Object-Oriented systems

SM–14

Scalability – traffic light example

SM–15

Traffic light with superstates – all states view

Superstates

Common to
all inner states

Initial state

SM–16

Traffic light – top level view

SM–17

Traffic light – level 1 view

SM–18

Traffic light – level 2 view

SM–19

Statechart advantages

 Easier to read
 Suited for object oriented systems (UML uses statecharts)
 Hierarchical structure helps with state explosion
 They can be used to model concurrent processes as well

SM–20

Concurrent statechart

SM–21

State model

 Must support automatic test generation
 The following criteria must be met

 Complete and accurate reflection of the implementation to
be tested

 Allows for abstraction of detail
 Preserves detail that is essential for revealing faults
 Represents all events and actions
 Defines state so that the checking of resultant state can be

automated

SM–22

What is a state?

 We need an executable definition that can be evaluated
automatically

 An object with two Boolean fields has 4 possible states?
 This would lead to trillions of states for typical classes

 Instead, state is
 A set of variable value combinations that share some

property of interest

 Can be coded as a Boolean expression

SM–23

An example

 Consider the following class

 A primitive view of the state space would yield too many
states
 The cross-product of all values

 What abstract gives fewer states?
 How is the abstraction represented?

Class Account {
 AccountNumber number;
 Money balance;
 Date lastUpdate;
 …
}

SM–24

Trillions of states

SM–25

Three abstract states

Shaded volumes

SM–26

State invariants

 A valid state can be expressed with a state invariant
 a Boolean expression that can be checked

 A state invariant defines a subset of the values allowed by the
class invariant
 ensure a or b

in Eiffel this defines two states are possible

SM–27

Transitions

 A transition is a unique combination of
 Two state invariants

 One for the accepting
 One for the resultant state
 Both may be the same

 An associated event
 An optional guard expression
 An optional action or actions

SM–28

Transition components

 An Event
 A message sent to the class under test
 A response received from a supplier of the class under test
 An interrupt or similar external control action that must be

accepted

 A guard
 Predicate associated with an event
 No side effects

 An action
 The side effects that occur

SM–29

Alpha and Omega states

 The initial stage of an object is the state right after it is
constructed

 However, a class may have multiple constructors that
leave the object in different states

 To avoid modeling problems we define that an object is in
the α state just before construction

 α transitions go from α state to a constructor state

 Similarly with ω and destruction (not necessary to model
ω for languages that have garbage collection)

 ω transitions go from a destructor state to the ω state

