
Test automation / JUnit

Building automatically repeatable test suites

JU–2

Test automation

 Test automation is software that automates any aspect of
testing
 Generating test inputs and expected results
 Running test suites without manual intervention
 Evaluating pass/no pass

 Testing must be automated to be effective and repeatable

JU–3

Automated testing steps

 Exercise the implementation with the automated test suite
 Repair faults revealed by failures
 Rerun the test suite on the revised implementation
 Evaluate test suite coverage
 Enhance the test suite to achieve coverage goals
 Rerun the automated test suite to support regression testing

JU–4

Automated testing advantages

 Permits quick and efficient verification of bug fixes
 Speeds debugging and reduces “bad fixes”
 Allows consistent capture and analysis of test results
 Its cost is recovered through increased productivity and better

system quality
 More time to design better tests, rather than entering and

reentering tests

JU–5

Automated testing advantages

 Unlike manual testing, it is not error-prone and tedious
 Only feasible way to do regression testing
 Necessary to run long and complex tests
 Easily evaluates large quantities of output

JU–6

Limitations and caveats

 A skilled tester can use his experience to react to manual
testing results by improvising effective tests

 Automated tests are expensive to create and maintain
 If the implementation is changing frequently, maintaining the

test suite might be hard

JU–7

XP approach to testing

 In the Extreme Programming approach
 Tests are written before the code itself
 If the code has no automated test cases, it is assumed not

to work
 A testing framework is used so that automated testing can

be done after every small change to the code
 This may be as often as every 5 or 10 minutes

 If a bug is found after development, a test is created to keep
the bug from coming back

JU–8

XP consequences

 Fewer bugs
 More maintainable code
 The code can be refactored without fear
 Continuous integration

 During development, the program always works
 It may not do everything required, but what it does, it does

right

JU–9

JUnit

 JUnit is a framework for writing tests
 Written by Erich Gamma (of Design Patterns fame) and Kent

Beck (creator of XP methodology)
 Uses Java 5 features such as annotations and static

imports

 JUnit helps the programmer:
 define and execute tests and test suites
 formalize requirements
 write and debug code
 integrate code and always be ready to release a working

version

JU–10

Terminology

 A test fixture sets up the data (both objects and primitives)
that are needed for every test
 Example: If you are testing code that updates an employee

record, you need an employee record to test it on

 A unit test is a test of a single class
 A test case tests the response of a single method to a

particular set of inputs
 A test suite is a collection of unit tests
 A test runner is software that runs tests and reports results

JU–11

Structure of a JUnit test class

 The next sequence of slides deal with JUnit when compiling
and running Java at the operating system level
 A later sequence of slides describes how to use JUnit within

Eclipse

 To test a class named Fraction
 Create a test class FractionTest

import org.junit.*;
import static org.junit.Assert.*;
public class FractionTest
{

…
}

JU–12

Test fixtures

 Methods annotated with @Before will execute before every
test case

 Methods annotated with @After will execute after every test
case

@Before
public void setUp() {…}

@After
public void tearDown() {…}

JU–13

Class Test fixtures

 Methods annotated with @BeforeClass will execute once
before all test cases

 Methods annotated with @AfterClass will execute once
after all test cases

 These are useful if you need to allocate and release
expensive resources once

JU–14

Test cases

 Methods annotated with @Test are considered to be test
cases

@Test
public void testadd() {…}

@Test
public void testToString() {…}

JU–15

What JUnit does

 For each test case aTestCase
 JUnit executes all @Before methods

 Their order of execution is not specified

 JUnit executes aTestCase
 Any exceptions during its execution are logged

 JUnit executes all @After methods
 Their order of execution is not specified

 A report for all test cases is presented

JU–16

Within a test case

 Call the methods of the class being tested
 Assert what the correct result should be with one of the

provided assert methods
 These steps can be repeated as many times as necessary
 An assert method is a JUnit method that performs a test, and

throws an AssertionError if the test fails
 JUnit catches these exceptions and shows you the results

JU–17

List of assert methods 1

 assertTrue(boolean b)
assertTrue(String s, boolean b)

 Throws an AssertionError if b is False
 The optional message s is included in the Error

 assertFalse(boolean b)
assertFalse(String s, boolean b)

 Throws an AssertionError if b is True
 All assert methods have an optional message

JU–18

Example: Counter class

 Consider a trivial “counter” class
 The constructor creates a counter and sets it to zero

 The increment method adds one to the counter and
returns the new value

 The decrement method subtracts one from the counter
and returns the new value

 The corresponding JUnit test class is on the next slide

JU–19

Example JUnit test class for counter program

public class CounterTest {
Counter counter1;

@Before

 public void setUp() { // create a test fixture
counter1 = new Counter();

}

 @Test

 public void testIncrement() {
 assertTrue(counter1.increment() == 1);
 assertTrue(counter1.increment() == 2);
}

@Test

 public void testDecrement() {
 assertTrue(counter1.decrement() == -1);
}

}

Each test begins with a brand new
counter. No need consider the
order in which the tests are run.

JU–20

List of assert methods 2

 assertEquals(Object expected,
 Object actual)

 Uses the equals method to compare the two objects
 Casting may be required when passing primitives, although

autoboxing may be done
 There is also a version to compare arrays

JU–21

List of assert methods 3

 assertSame(Object expected,
 Object actual)
 Asserts that two references are attached to the same

object (using ==)

 assertNotSame(Object expected,
 Object actual)
 Asserts that two references are not attached to the same

object

JU–22

List of assert methods 4

 assertNull(Object object)
 Asserts that a reference is null

 assertNotNull(Object object)
 Asserts that a reference is not null

 fail()
 Causes the test to fail and throw an AssertionError
 Useful as a result of a complex test, or when testing for

exceptions

JU–23

Testing for exceptions

 If a test case is expected to raise an exception, it can be
noted as follows and on the next slide

@Test(expected = Exception.class)
public void testException() {
 //Code that should raise an exception
 fail("Should raise an exception");
}

JU–24

Testing for exceptions – example

public void testAnIOExceptionIsThrown {
 try
 {
 // Code that should raise an IO exception
 fail("Expected an IO exception");
 }
 catch (IOException e)
 {
 // This is the expected result, so
 // leave it empty so that the test
 // will pass. If you care about
 // particulars of the exception, you
 // can test various assertions about
 // the exception object
 }
}

JU–25

The assert statement

 A statement such as
assert boolean_condition;

 will also throw an AssertionError if the boolean_condition
is false

 Can be used instead of the JUnit assertTrue method

JU–26

Ignoring test cases

 Test cases that are not finished yet can be annotated with
@Ignore

 JUnit will not execute the test case but will report how many
test cases are being ignored

JU–27

Automated testing issues

 It isn’t easy to see how to unit test GUI code
 JUnit is designed to call methods and compare the

results they return against expected results
 This works great for methods that just return results,

but many methods have side effects

JU–28

Automated testing issues

 To test methods that do output, you have to capture the
output
 It’s possible to capture output, but it’s an unpleasant

coding chore

 To test methods that change the state of the object, you have
to have code that checks the state
 It’s a good idea to have methods that test state invariants

JU–29

First steps toward solutions

 You can redefine System.out to use a different
PrintStream with System.setOut(PrintStream)

 You can “automate” GUI use by “faking” events
 We will see this in more detail later

JU–30

JUnit in Eclipse

 JUnit can be downloaded from www.junit.org
 For this course, we will use it as part of Eclipse
 Eclipse contains wizards to help with the development of

test suites with JUnit
 JUnit results are presented in an Eclipse window

JU–31

Hello World demo

 Run Eclipse
 File -> New -> Project, choose Java Project, and click Next
 Type in a project name, e.g. ProjectWithJUnit, click Finish
 Project -> Properties, select Java Build Path, Libraries, click Add

External JARs.
 Browse to directory where JUnit is stored
 Pick junit.jar and click Open
 JUnit will appear in the list of libraries. Click OK

JU–32

Create a class

 Right-click on ProjectWithJUnit
Select New -> Package
Enter package name, e.g. code
Click Finish

 Right-click on code
Select New -> Class
Enter class name, e.g. HelloWorld
Click Finish

JU–33

Create a class - 2

 Add a dummy method such as
public String say() { return null; }

 Right-click in the editor window and select Save

JU–34

Create a test class

 Right-click on ProjectWithJUnit
Select New -> Package
Enter package name, e.g. test
Click Finish

 Right-click on test
Select New -> Junit Test Case
Enter test class name, e.g. HelloWorldTest
Enter class under test: code.HelloWorld

JU–35

Create a test class

 Check to create a setup method
 Click Next
 Check the checkbox for the say method

 This will create a stub for a test case for this method

 Click Finish
 The HelloWorldTest class is created
 The first version of the test suite is ready

JU–36

Run the test class - 1st try

 Run -> Run as -> JUnit Test
 The results appear in the left window (you may have to click

the JUnit tab)
 The automatically created test case fails

JU–37

Create a better test case

 Import the class under test
import code.HelloWorld;

 Declare an attribute of type HelloWorld
HelloWorld hi;

 The setup method should create a HelloWorld object
hi = new HelloWorld();

 Modify the testSay method body to
assertEquals("Hello World!",
 hi.say());

JU–38

Run the test class - 2nd try

 Save the new version of the test class and re-run
 This time the test fails due to expected and actual not being

equal
 The body of the method say has to be modified to

return(“Hello World!”);
for the test to pass

JU–39

Create a test suite

 Right-click on the test package, select New -> Class. Name
the class AllTests.

 Modify the class text so it looks like the next slide
 Run with Run -> Run As -> JUnit Test
 You can easily add more test classes

JU–40

Example Currency program

package currency;
public class Currency {
protected int amount;
protected String type;
Currency(int amount, String type) {
 this.amount = amount; this.type = type; }
public boolean equals(Object obj) {
 return amount == ((Currency) obj).amount
 && type == ((Currency) obj).type; }
protected Currency times(int multiplier) {
 return new Currency(amount * multiplier, type); }
static Currency dollar(int amount) {
 return new Currency(amount, "Dollar"); }
static Currency franc(int amount){
 return new Currency(amount, "Franc"); }
}

JU–41

Example Currency test program – 1 of 2

package currency;
import junit.framework.*;
public class TestMoney extends TestCase{
public static void main (String[] args) {
 junit.textui.TestRunner.run(suite());
}
public static Test suite() {
 return new TestSuite(TestMoney.class);
}
public void testEquality(){
 assertTrue(new Currency(5, "Currency").equals(new Currency(5, "Currency")));
 assertFalse(new Currency(5, "Currency").equals(new Currency(6, "Currency")));
 assertTrue(new Currency(5, "Franc").equals(new Currency(5, "Franc")));
 assertFalse(new Currency(5, "Franc").equals(new Currency(6, "Franc")));
 assertFalse(new Currency(5, "Franc").equals(new Currency(5, "Currency")));
}
…

JU–42

Example Currency test program – 2 of 2

…
public void testMultiplication() {
 Currency five = new Currency(5, "Dollar");
 assertEquals(new Currency(15, "Dollar"), five.times(3));
}
public void testCurrencyType()
 assertEquals("Dollar", Currency.dollar(1).type);
 assertEquals("Franc", Currency.franc(1).type);
}

}

JU–43

Minimal output testing

 What to do if no tool exists?
 Use minimal output testing

 Works for any programming language
 Successful test outputs only the briefest of messages

 test started
test ended

JU–44

Minimal output testing – 2

 Basic structure
 Test program is a sequence of if-statements with the

following structure
 Note use of msg_id to identify which test failed

 Rest of test program consists of set up and support
routines to simplify programming the condition and then-
phrase

if expected_output ≠ actual output
then print_message(msg_id, …)
fi

