
Structural Testing Review

Chapter 11

RST–2

The big question

 When should testing stop?

RST–3

Possible stopping criteria

 When you run out of time
 When continued testing causes no new failures
 When continued testing reveals no new faults
 When you cannot think of any new test cases
 When you reach a point of diminishing returns
 When mandated coverage has been attained
 When all faults have been removed

RST–4

Measuring Gaps and Redundancy

 Functional testing methods may produce test suites with
serious gaps and a lot of redundancy

 Structural testing analysis makes it possible to measure the
extent of these problems

121918177126116125Worst case
00001313133Nominal

p11p10p9p8p7p6p5p4p3p2p1Paths

 – graph paths
 Triangle program – nominal boundary value analysis

 – worst case boundary value analysis

RST–5

Structural Metrics

 What is a structural metric?

 What definitions are used for structural metrics?

RST–6

Structural Metrics – 2

 A functional testing method M produces m test cases
 A structural metric S identifies s coverage elements in the

unit under test
 When the m test cases run, they traverse c coverage

elements

RST–7

Metric definitions

 Coverage of method M with respect to metric S is
C(M,S) = c / s

 Deals with gaps – a value < 1 means there are gaps

 Redundancy of method M with respect to metric S is
R(M,S) = m / s

 Deals with absolute redundancy – bigger ratio implies more
redundancy – best is 1

 Not so useful, could have massive redundancy with
massive gaps giving a small ratio

 Net redundancy of method M with respect to metric S is
NR(M,S) = m / c

 Deals with relative redundancy – best is 1
 Very useful, shows the redundancy of what is tested

RST–8

Metric values for triangle program

1.000.720.721188Decision
Table

1.000.360.361144WN ECT

11.3611.361.001111125Worst Case
Analysis

2.141.360.6411715Boundary
Value

NR(M,S)R(M,S)C(M,S)scmMethod

RST–9

Metric values for commission program

0.631404025Slice

0.761333325DU-path

2.271111125DD-path

0.27111112Decision
table

2.271111125Output BVA

R(M,S)C(M,S)scmMethod

RST–10

Coverage example

 TEX (Donald Knuth) and AWK (Aho, Weinberger, Kernigan)
are widely used programs with comprehensive functional test
suites

 Coverage analysis shows the following percentage of items
covered

55%48%59%70%AWK

48%53%72%85%TEX

C-useP-useBranchSegmentSystem

RST–11

Coverage usefulness

 100% coverage is never a guarantee of bug-free software
 Coverage reports can

 Point out inadequate test suites
 Suggest the presence of surprises, such as blind spots

in the test design
 Help identify parts of the implementation that require

structural testing

 Would like to know how effective test cases are with
respect to kinds of faults
 Can try by selecting appropriate paths

 By fault type
 By risk (fear)

RST–12

Is 100% coverage possible?

 Can you suggest cases that prevent 100% coverage?

RST–13

Is 100% coverage possible? – 2

 Lazy (short-circuit) evaluation
 Mutually exclusive conditions

 (x > 2) || (x < 10)

 Redundant predicates
 if (x == 0) do1; else do2;
if (x != 0) do3; else do4;

 Dead code
 “This should never happen”

RST–14

How to measure coverage?

 Can you suggest ways to measure coverage?

RST–15

How to measure coverage? – 2

 The source code is instrumented
 Depending on the code coverage model, code that writes to a

trace file is inserted in every branch, statement etc.
 Most commercial tools measure segment and branch

coverage

RST–16

Questions about Coverage

 Is 100% coverage the same as exhaustive testing?
 Are branch and path coverage the same?
 Can path coverage be achieved?
 Is every path in a control flow graph testable?
 Is less than 100% coverage acceptable?
 Can I trust a test suite without measuring coverage?

RST–17

Coverage counter-example vending machine

void give_change(int price, deposit) {
 int n_100, n_25, n_10, n_5, change_due;
 if (deposit <= price) { change_due = 0; }
 else {
 change_due = deposit – price;
 n_100 = change_due / 100;
 change_due = change_due – n_100*100;
 n_25 = change_due / 25;
 change_due = change_due – n_25*25;
 n_10 = change_due / 10;
 change_due = change_due – n_10*10;
 n_5 = change_due / 10; // Cut-and-paste bug
 }
}

Cannot guarantee path will use revealing
test values for deposit and price

RST–18

Coverage counter-example aircraft control

void flight_control_event_handler (event e) {
 switch(e)
 { ...
 case RAISE_LANDING_GEAR:

landing_gear_motor (turn_on_until_raised);
 break;
 ...
 }
}

Can you find the bug?
Will any path test find the bug?
What can correct the bug?

RST–19

Trend line test coverage of items

DD_path Basis
path

DU-path
Sophistication

high

low

Number of test coverage items

Slice

RST–20

Trend line test method effort

DD_path Basis
path

DU-path
Sophistication

high

low

Effort to find test coverage items

Slice

