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The big question

 When should testing stop?
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Possible stopping criteria

 When you run out of time
 When continued testing causes no new failures
 When continued testing reveals no new faults
 When you cannot think of any new test cases
 When you reach a point of diminishing returns
 When mandated coverage has been attained
 When all faults have been removed
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Measuring Gaps and Redundancy

 Functional testing methods may produce test suites with
serious gaps and a lot of redundancy

 Structural testing analysis makes it possible to measure the
extent of these problems
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Structural Metrics

 What is a structural metric?

 What definitions are used for structural metrics?
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Structural Metrics – 2

 A functional testing method M produces m test cases
 A structural metric S  identifies s coverage elements in the

unit under test
 When the m test cases run, they traverse c coverage

elements



RST–7

Metric definitions

 Coverage of method M with respect to metric S is
C(M,S) = c / s

 Deals with gaps – a value < 1 means there are gaps

 Redundancy of method M with respect to metric S is
R(M,S) = m / s

 Deals with absolute redundancy – bigger ratio implies more
redundancy – best is 1

 Not so useful, could have massive redundancy with
massive gaps giving a small ratio

 Net redundancy of method M with respect to metric S is
NR(M,S) = m / c

 Deals with relative redundancy – best is 1
 Very useful, shows the redundancy of what is tested
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Metric values for triangle program

1.000.720.721188Decision
Table

1.000.360.361144WN ECT

11.3611.361.001111125Worst Case
Analysis

2.141.360.6411715Boundary
Value

NR(M,S)R(M,S)C(M,S)scmMethod
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Metric values for commission program

0.631404025Slice

0.761333325DU-path

2.271111125DD-path

0.27111112Decision
table

2.271111125Output BVA

R(M,S)C(M,S)scmMethod
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Coverage example

 TEX (Donald Knuth) and AWK (Aho, Weinberger, Kernigan)
are widely used programs with comprehensive functional test
suites

 Coverage analysis shows the following percentage of items
covered

55%48%59%70%AWK

48%53%72%85%TEX

C-useP-useBranchSegmentSystem
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Coverage usefulness

 100% coverage is never a guarantee of bug-free software
 Coverage reports can

 Point out inadequate test suites
 Suggest the presence of surprises, such as blind spots

in the test design
 Help identify parts of the implementation that require

structural testing

 Would like to know how effective test cases are with
respect to kinds of faults
 Can try by selecting appropriate paths

 By fault type
 By risk (fear)
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Is 100% coverage possible?

 Can you suggest cases that prevent 100% coverage?
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Is 100% coverage possible? – 2

 Lazy (short-circuit) evaluation
 Mutually exclusive conditions

 (x > 2) || (x < 10)

 Redundant predicates
 if (x == 0) do1; else do2;
if (x != 0) do3; else do4;

 Dead code
 “This should never happen”
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How to measure coverage?

 Can you suggest ways to measure coverage?
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How to measure coverage? – 2

 The source code is instrumented
 Depending on the code coverage model, code that writes to a

trace file is inserted in every branch, statement etc.
 Most commercial tools measure segment and branch

coverage
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Questions about Coverage

 Is 100% coverage the same as exhaustive testing?
 Are branch and path coverage the same?
 Can path coverage be achieved?
 Is every path in a control flow graph testable?
 Is less than 100% coverage acceptable?
 Can I trust a test suite without measuring coverage?
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Coverage counter-example vending machine

void give_change(int price, deposit) {
  int n_100, n_25, n_10, n_5, change_due;
  if (deposit <= price) { change_due = 0; }
  else {
    change_due = deposit – price;
    n_100      = change_due / 100;
    change_due = change_due – n_100*100;
    n_25       = change_due / 25;
    change_due = change_due – n_25*25;
    n_10       = change_due / 10;
    change_due = change_due – n_10*10;
    n_5        = change_due / 10; // Cut-and-paste bug
  }
}

Cannot guarantee path will use revealing
test values for deposit and price
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Coverage counter-example aircraft control

void flight_control_event_handler (event e) {
  switch(e)
  { ...
    case RAISE_LANDING_GEAR:

landing_gear_motor ( turn_on_until_raised );
      break;
    ...
  }
}

Can you find the bug?
Will any path test find the bug?
What can correct the bug?
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Trend line test coverage of items

DD_path Basis
path

DU-path
Sophistication

high

low

Number of test coverage items

Slice
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Trend line test method effort

DD_path Basis
path

DU-path
Sophistication

high

low

Effort to find test coverage items

Slice


