
Dataflow Testing

Chapter 10

DFT–2

Dataflow Testing

 Testing All-Nodes and All-Edges in a control flow graph
may miss significant test cases

 Testing All-Paths in a control flow graph is often too time-
consuming

 Can we select a subset of these paths that will reveal the
most faults?

 Dataflow Testing focuses on the points at which variables
receive values and the points at which these values are
used

DFT–3

Concordances

 Data flow analysis is in part based concordance analysis
such as that shown below – the result is a variable cross-
reference table

 18 beta ← 2
 25 alpha ← 3 × gamma + 1
 51 gamma ← gamma + alpha - beta
123 beta ← beta + 2 × alpha
124 beta ← gamma + beta + 1

 Assigned Used
alpha 25 51, 123
beta 18, 123, 124 51, 123, 124
gamma 51 25, 51, 124

DFT–4

Dataflow Analysis

 Can reveal interesting bugs
 A variable that is defined but never used
 A variable that is used but never defined
 A variable that is defined twice before it is used
 Sending a modifier message to an object more than once

between accesses
 Deallocating a variable before it used

 Container problem – deallocating container looses
references to items in the container, memory leak

 These bugs can be found from a cross-reference table
using static analysis

 Paths from the definition of a variable to its use are more
likely to contain bugs

DFT–5

Definitions

 A node n in the program graph is a defining node for
variable v – DEF(v, n) – if the value of v is defined at the
statement fragment in that node
 Input, assignment, procedure calls

 A node in the program graph is a usage node for variable
v – USE(v, n) – if the value of v is used at the statement
fragment in that node
 Output, assignment, conditionals

 In languages without garbage collection
 A node in the program grade is a kill node for a variable v

– KILL(v, n) – if the variable is deallocated at the statement
fragment in that node.

 In the following slide can define additional path
types

DFT–6

Definitions – 2

 A usage node is a predicate use, P-use, if variable v
appears in a predicate expression
 Always in nodes with outdegree ≥ 2

 A usage node is a computation use, C-use, if variable v
appears in a computation
 Always in nodes with outdegree ≤ 1

 A definition-use path, du-path, with respect to a variable
v is a path whose first node is a defining node for v, and
its last node is a usage node for v

 A du-path with no other defining node for v is a definition-
clear path, dc-path

DFT–7

1 int max = 0;
2 int j = s.nextInt();
3 while (j > 0)
4 if (j > max) {
5 max = j;
6 }
7 j = s.nextInt();
8 }
9 System.out.println(max);

Example 1 – program

A definition of j

A C-use of j

P-uses of j

A definition of j

Definitions
of max

A C-use of max

DFT–8

Example 1 – analysis

Legend
A..F Segment name
d defining node for j
u use node for j

int max = 0;
int j = s.nextInt();

while (j > 0)

System.out.println(max);

max = j;

if (j > max)

j = s.nextInt();

A

B

C

D

E

F

d

d

u

u

u

dc-paths j
A B
A C
A D
E B
E C
E D

dc-paths max
A F
A C
D C
D F

DFT–9

Dataflow Coverage Metrics

 Based on these definitions we can define a set of
coverage metrics for a set of test cases

 We have already seen
 All-Nodes
 All-Edges
 All-Paths

 Data flow has additional test metrics for a set T of paths in
a program graph
 All assume that all paths in T are feasible

DFT–10

All-Defs Criterion

 The test set T satisfies the All-Def criterion iff for every
variable v in the program P, T contains a dc-path from
every defining node of v to a use of v
 For every variable, T contains dc-paths from every defining

node to at least one use node
 Not all use nodes need to be reached

!

"v # P(V),nd # dd _ graph(P) |DEF(v,nd)

•$nu# dd _ graph(P) |USE(v,nu)• dc _ path(nd,nu)# T

DFT–11

All-Uses Criterion

 The test set T satisfies the All-Uses criterion iff for every
variable v in the program P, T contains a dc-path from
every defining node of v to every use of v
 For every variable, T contains dc-paths that start at every

definition node, and terminate at every use node for the
variable

 Not DEF(v,n)×USE(v,n) – not possible to have a dc-
path from every definition node to every use node

!

("v # P(V),nu# dd _ graph(P) |USE(v,nu)

•$nd # dd _ graph(P) |DEF(v,nd)• dc _ path(nd,nu)# T)

%

all_ defs_criterion

DFT–12

All-P-uses / Some-C-uses

 The test set T satisfies the All-P-uses/Some-C-uses
criterion iff for every variable v in the program P, T
contains a dc-path from every defining node of v to every
P-use of v; if a definition of v has no P-uses, a dc-path
leads to at least C-use

!

("v # P(V),nu# dd _ graph(P) |P _ use(v,nu)

•$nd # dd _ graph(P) |DEF(v,nd)• dc _ path(nd,nu)# T)

%

all_ defs_criterion

DFT–13

All-C-uses / Some-P-uses

 The test set T satisfies the All-C-uses/Some-P-uses
criterion iff for every variable v in the program P, T
contains a dc-path from every defining node of v to every
C-use of v; if a definition of v has no C-uses, a dc-path
leads to at least P-use

!

("v # P(V),nu# dd _ graph(P) |C _ use(v,nu)

•$nd # dd _ graph(P) |DEF(v,nd)• dc _ path(nd,nu)# T)

%

all_ defs_criterion

DFT–14

Rapps-Weyuker data flow hierarchy

All-Paths

All-DU-Paths

All-Uses

All-C-uses
Some-P-uses

All-Defs All-P-uses

All-Edges

All-Nodes

All-P-uses
Some-C-uses

DFT–15

Data flow guidelines

 Data flow testing is good for computationally intensive
programs
 If P-use of variables are computed, then P-use data flow

testing is good

 Define/use testing provides a rigorous, systematic way to
examine points at which faults may occur.

 Aliasing of variables causes serious problems!
 Working things out by hand for anything but small

methods is hopeless
 Compiler-based tools help in determining coverage values

DFT–16

Program slice

 Analyze program by focusing on parts of interest,
disregarding uninteresting parts.
 The point of slices is to separate a program into components

that have a useful functional meaning
 Ignore those parts that do not contribute to the functional

meaning of interest
 Cannot do this with du-paths, as slices are not simply

sequences of statements or statement fragments

 Informally
 A program slice is a set of program statements that

contributes to or affects a value of a variable at some point
in a program

DFT–17

Program slice – 2

 Formally
 Given a program P and a set of variables V in P, a slice on the

variable V at statement n, S(V,n), is the set of all statements and
statement fragments in P prior to the node n that contribute to the
values of variables in V at node n.

 Usually statements and fragments correspond to
numbered nodes in a program graph, so S(V,n) is a set of
node numbers.

 "Prior to" is a dynamic execution time notion
 Inclusion of node n

 Include n if a variable in v is defined at n
 Do not include n if no variable is defined at n; i.e. all

variables are used at n

DFT–18

Program slide – meaning of "contributes to"

 Refine use set for a variable
 P-use – used in a decision predicate
 C-use – used in a computation
 O-use – used for output
 L-use – used for location (pointers, subscripts)
 I-use – used for iteration (loop counters, loop indices)
 I-def – defined by input
 A-def – defined by assignment

 Textbook excludes all non-executable statements such as
variable declarations

DFT–19

Program slide – meaning of "contributes to" – 2

 What to include in S(V,n)? Consider a single variable v
 Include all I-def, A-def
 Include any C-use, P-use of v, if excluding it would change

the value of v
 Include any P-use or C-use of another variable, if excluding

it would change the value of v
 L-use and I-use

 Inclusion is a judgment call, as such use does cause
problems

 Exclude all non-executable nodes such as variable
declarations – if a slice is not to be compliable

 Exclude O-use, as does not change the value of v

DFT–20

Example 1 – some slices

 This not an exciting program wrt to slices
 S(max, 9) = { 1, 4, 5, 9 }
 S(max, 9) = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }
 S(max, 5) = { 1, 4, 5, 6, 8 }
 S(max, 5) = { 1, 2, 3, 4, 5, 6, 7, 8 }
 S(j, 7) = { 2, 3, 4, 5 6, 7, 8 }
 S(j, 5) = {1, 2, 3, 4, 5, 6, 7, 8}

DFT–21

Slice style & technique

 Do not make a slice S(V,n) where the variables of interest
are not in node n
 Leads to slices that are too big

 Make slices on one variable
 Sometimes slices with more variables are trivial super sets

of a one variable case, then a slice on many variables is
useful, as we use it and not the one variable slice

 Make slices for all A-def nodes
 Make slices for all P-def nodes – very useful in decision

intensive programs

DFT–22

Slice style & technique – 2

 Avoid slices on C-use, they tend to be redundant
 Avoid slices on O-use, they are the union of A-def and I-

def slices
 Try to make slices compliable

 Means including declarations and compiler directives
 Each such slice becomes executable and more easily tested

 Relative complement of slices can have diagnostic value
 If you have difficulty at a part, divide the program into two

parts
 If the error does not lie in one part, then it must be in the

relative complement

DFT–23

Slice style & technique – 3

 Slices and DD-paths have a many-to-many relationship
 Nodes in one slice may be in many DD-paths, and nodes in

one DD-path may be in many slices
 Sometimes well-chosen relative complement slices can be

identical to DD-paths

 Developing a lattice of slices can improve insight in
potential trouble spots

 Slices contain define/reference information
 When slices are equal, the corresponding paths are

definition clear

DFT–24

Slices and programming practice

 Slice testing is an example where consideration of testing
can lead to better program development
 Build and test a program in slices
 Merge/splice slices into larger programs
 Use slice composition to re-develop difficult sections of

program text

