
DTT–1

Decision Table-Based Testing

Chapter 7

DTT–2

Decision Tables - Wikipedia

 A precise yet compact way to model complicated logic

 Associate conditions with actions to perform

 Can associate many independent conditions with several
actions in an elegant way

DTT–3

Decision Table Terminology

XXa4

XXa3

XXa2

XXXa1

-FT-FTc3

FTTFTTc2

FFFTTTc1

Rules
7,8

Rule 6Rule 5Rules
3,4

Rule 2Rule 1Stub

condition stubs condition entries
action stubs action entries

DTT–4

Decision Table Terminology – 2

condition stubs condition entries
action stubs action entries

 Condition entries binary values
 We have a limited entry table

 Condition entries have more than two values
 We have an extended entry table

DTT–5

Printer Troubleshooting DT

XXCheck for paper jam

XXXXCheck/replace ink

XXXXEnsure printer software is installed

XXCheck the printer-computer cable

XHeck the power cable

Actions

NYNYNYNYPrinter is unrecognized

NNYYNNYYA red light is flashing

NNNNYYYYPrinter does not print

Conditions

A complete limited entry table

DTT–6

Test cases for decision tables

 How are the entries in a decision table interpreted
with respect to test cases?

 Condition entries?

 Action entries?

DTT–7

Test cases for decision tables – 2

 Conditions are interpreted as
 Input
 Equivalence classes of inputs

 Actions are interpreted as
 Output
 Major functional processing portions

 With complete decision tables
 Have complete set of test cases

DTT–8

Triangle Decision Table

XXXA5: Impossible

XA4: Equilateral

XXXA3: Isosceles

XA2: Scalene

XA1: Not a Triangle

FTFTFTFT–C5: b = c?

FFTTFFTT–C4: a = c?

FFFFTTTT–C3: a = b?

TTTTTTTTFC1: <a, b,c > forms a triangle?

Action added by a tester showing impossible rules

DTT–9

Triangle Decision Table – refined

XXXA5: Impossible

XA4: Equilateral

XXXA3: Isosceles

XA2: Scalene

XXXA1: Not a Triangle

FTFTFTFT–––C4: b = c?

FFTTFFTT–––C3: a = c?

FFFFTTTT–––C2: a = b?

TTTTTTTTF––C1-3: c < a+b?

TTTTTTTTTF–C1-2: b < a+c?

TTTTTTTTTTFC1-1: a < b+c?

Similar to equivalence classes we can refine the conditions

DTT–10

Triangle Test Cases

Scalene543DT11

Isosceles223DT10

Isosceles232DT9

Impossible?????????DT8

Isosceles322DT7

Impossible?????????DT6

Impossible?????????DT5

Equilateral555DT4

Not a Triangle421DT3

Not a Triangle241DT2

Not a Triangle214DT1

Expected OutputcbaCase ID

DTT–11

NextDate Decision Table

 The NextDate problem illustrates the correspondence
between equivalence classes and decision table structure

 The NextDate problem illustrates the problem of
dependencies in the input domain

 Decision tables can highlight such dependencies

 Impossible dates can be clearly marked as a separate action

DTT–12

NextDate Equivalence Classes – for 1st try

M1 = {month : 1 .. 12 | days(month) = 30 }

M2 = {month : 1 .. 12 | days(month) = 31 }

M3 = {month : {2} }

D1 = {day : 1 .. 28}

D2 = {day : {29} }

D3 = {day : {30} }

D4 = {day : {31} }

Y1 = {year : 1812 .. 2012 | leap_year (year) }

Y2 = {year : 1812 .. 2012 | common_year (year) }

As in discussion for
equivalence classes

DTT–13

NextDate decision table
with mutually exclusive conditions

A2: Next Date

A1: Impossible

T––C3: month in M3?

–T–C2: month in M2?

––TC1: month in M1?

Because a month is in an equivalence class
we cannot have T more than one entry. The do not care
entries are really F.

DTT–14

NextDate DT (1st try - partial)

X

T

T

T

X

T

T

T

X

T

T

T

TTC7: day in D4?

XXXXXXXA2: Next Date

XXA1: Impossible

TTTTC9: year in Y2?

TTTTTC8: year in Y1?

TTC6: day in D3?

TTC5: day in D2?

TTTC4: day in D1?

C3: month in M3?

TC2: month in M2?

TTTTTTTTC1: month in M1?

How many rules
• for a complete table?
• with don't care entries?

DTT–15

NextDate Equivalence Classes – for 2nd try

M1 = {month : 1 .. 12 | days(month) = 30 }

M2 = {month : 1 .. 12 | days(month) = 31 }

M3 = {month : {2} }

D1 = {day : 1 .. 28}

D2 = {day : {29} }

D3 = {day : {30} }

D4 = {day : {31} }

Y1 = {year : {2000} }

Y2 = {year : 1812 .. 2012 | leap_year (year) ∧ year ≠ 2000 }

Y3 = {year : 1812 .. 2012 | common_year (year) }

Handle leap year better

DTT–16

NextDate DT (2nd try - part 1)

XA1: Impossible

???A6: Increment year

???A5: reset month

???XA4: Increment month

XXA3: Reset day

XXXXXA2: Increment day

––––––––C3: year in

D4D3D2D1D4D3D2D1C2: day in

M2M2M2M2M1M1M1M1C1: month in

Extended entry table – more refined actions

This table has 16 rules.
How many rules
for a complete table?

DTT–17

NextDate DT (2nd try - part 2)

XXXXA1: Impossible

A6: Increment year

A5: reset month

XXXA4: Increment month

XXXA3: Reset day

XA2: Increment day

––Y3Y2Y1Y3Y2Y1C3: year in

D3D3D2D2D2D1D1D1C2: day in

M3M3M3M3M3M3M3M3C1: month in

DTT–18

New Equivalence Classes – for 3rd try

M1 = {month : 1 .. 12 | days(month) = 30 }

M2 = {month : 1 .. 12 | days(month) = 31 ∧ month ≠ 12 }

M3 = {month : {12} }

M4 = {month : {2} }

D1 = {day : 1 .. 27}

D2 = {day : {28} }

D3 = {day : {29} }

D4 = {day : {30} }

D5 = {day : {31} }

Y1 = {year : 1812 .. 2012 | leap_year (year) }

Y2 = {year : 1812 .. 2012 | common_year (year) }

Handle end of month and
year better

DTT–19

NextDate DT (3rd try - part 1)

X

–

D2

M2

X

–

D2

M1

X

–

D1

M1

XA1: Impossible

A6: Increment year

A5: reset month

XXA4: Increment month

XXA3: Reset day

XXXXA2: Increment day

–––––––C3: year in

D5D4D3D1D5D4D3C2: day in

M2M2M2M2M1M1M1C1: month in

A 22 rule table

DTT–20

NextDate DT (3rd try - part 2)

X

–

D2

M3

X

–

D1

M3

X

–

D4

M3

X

–

D3

M3

XXXA1: Impossible

XA6: Increment year

XA5: reset month

XXA4: Increment month

XXXA3: Reset day

XXA2: Increment day

––Y2Y1Y2Y1––C3: year in

D5D4D3D3D2D2D1D5C2: day in

M4M4M4M4M4M4M4M3C1: month in

DTT–21

Don't care entries and rule counts

 Limited entry tables with N conditions have 2N rules.
 Don't care entries reduce the number of rules by implying

the existence of non-explicitly stated rules.

 How many rules does a table contain including all the
implied rules due to don't care entries?

DTT–22

Don't care entries and rule counts – 2

 Each don't care entry in a rule doubles the count for the
rule

 For each rule determine the corresponding rule count

 Total the rule counts

DTT–23

Don't care entries and rule counts – 3

1111111181632Rule count

FTFTFTFT–––C4: b = c?

FFTTFFTT–––C3: a = c?

FFFFTTTT–––C2: a = b?

TTTTTTTTF––C1-3: c < a+b?

TTTTTTTTTF–C1-2: b < a+c?

TTTTTTTTTTFC1-1: a < b+c?

+/ = 64

= 26

1
2
3
4
5
6

DTT–24

Don't care entries and rule counts – 4

 How many rules do extended entry tables have?

 What is the rule count with don't care entries?

 See DDT-16, -17 (NextDate 2'nd try)

 See DDT-19, -20 (NextDate 3'rd try)

 See Table 7.9, page 107, for a redundant table
 More rules than combination count of conditions

 See Table 7.10, page 108, for an inconsistent table
 More rules than combination count of conditions

DTT–25

Applicability

 The specification is given or can be converted to a
decision table .

 The order in which the predicates are evaluated does not
affect the interpretation of the rules or resulting action.

 The order of rule evaluation has no effect on resulting
action .

 Once a rule is satisfied and the action selected, no other
rule need be examined.

 The order of executing actions in a satisfied rule is of no
consequence.

DTT–26

Applicability – 2

 The restrictions do not in reality eliminate many potential
applications.

 In most applications, the order in which the predicates are
evaluated is immaterial.

 Some specific ordering may be more efficient than some
other but in general the ordering is not inherent in the
program's logic.

DTT–27

Decision Tables – Properties

 You have constructed a decision table

 Before deriving test cases, what properties should
the decision table have?

DTT–28

Decision Tables – Properties – 2

 Before deriving test cases, ensure that

 The rules are complete
 Every combination of predicate truth values is explicit in

the decision table

 The rules are consistent
 Every combination of predicate truth values results in

only one action or set of actions

DTT–29

Guidelines and Observations

 Decision Table testing is most appropriate for programs
where one or more of the conditions hold.

 What are those conditions?

DTT–30

Guidelines and Observations – 2

 Decision Table testing is most appropriate for programs
where
 There is a lot of decision making

 There are important logical relationships among input
variables

 There are calculations involving subsets of input variables

 There are cause and effect relationships between input and
output

 There is complex computation logic (high cyclomatic
complexity)

DTT–31

Guidelines and Observations – 3

 What are some problems with using decision tables?

DTT–32

Guidelines and Observations – 4

 Decision tables do not scale up very well
 May need to

 Use extended entry decision tables
 Algebraically simplify tables

 Decision tables need to be iteratively refined
 The first attempt may be far from satisfactory

 Similar to using equivalence classes

DTT–33

Guidelines and Observations – 5

 Redundant rules
 More rules than combination count of conditions
 Actions are the same
 Too many test cases
 See Table 7.9, page 107

 Inconsistent rules
 More rules than combination count of conditions
 Actions are different for the same conditions
 See Table 7.10, page 108

 Missing rules
 Incomplete table

DTT–34

Variable Negation Strategy

 An approach that can help with the scaling problems of
decision table-based testing

 Applicable when the system under test can be
represented as a truth table (binary input and output)

 Designed to select a small subset of the 2N test cases

DTT–35

Example truth table

1111115

0011114

1101113

1001112

1110111

0010110

110019

000018

011107

001106

010105

000104

011003

001002

010001

000000

ZDCBA

Ignition EnableManual ModeDamper ShutCall For HeatNormal PressureVariant
Number

Z = F (A, B, C, D)

DTT–36

Deriving the Logic Function

 Boolean algebra expressions
 A B = A and B
 A + B = A or B
 ~A = not A

 A logic function maps N Boolean input variables to a
Boolean output variable

 A truth table is an enumeration of all possible input and
output values

DTT–37

Logic function

 The logic function for the example is

Z = A B ~C + A D

 Several techniques to derive it
 Karnaugh maps
 Cause-effect graphs

 A compact logic function will produce more powerful test
cases

DTT–38

Variable Negation Strategy

 Designed to reveal faults that hide in a don’t care

 The test suite contains:
 Unique true points: A variant per term t, so that t is True

and all other terms are False
 In the expression A B ~C + A D , A B ~C and A D

are terms
 Near False Points: A variant for each literal in a term. The

variant is obtained by negating the literal and is selected
only if it makes Z = 0

 Each term variant creates a test candidate set

DTT–39

True points

 Unique true point candidate sets in boiler example

 Variants in the set {12} make A B ~C true but not A D
 Variant 13 makes both A B ~C and A D true and as a

consequence is not included in the set

 Variants in the the set {9,11,15} make A D true but not
A B ~C

 Variant 13 makes both A B ~C and A D true and as a
consequence is not included in the set

DTT–40

Near false points

1, 3, 5, 71, 3, 5, 7~A D7

8, 10, 148, 10, 12, 14A ~D6

9, 11, 15–A D5 Org. term

4, 54, 5~A B ~C4

88, 9A ~B ~C3

1414, 15A B C2

12–A B ~C1 Org. term

Function variants
containing this
negation where
Z = 0

Function variants
containing this
negation

Term
negation

Candidate
set number

Near false points are in black, candidate set numbers
2, 3, 4, 6 and 7. In green are true points.

DTT–41

Selecting the test cases

 At least one variant from each candidate set

 Can be done by inspection

 Random selection is also used

 Near False Points exercise combinations of don’t care
values

 6% of all possible tests are created

 98% of simulated bugs can be found

DTT–42

Selecting test cases – 2

X .X15

X MXX14

13

X MX12

X .X11

X10

 MX9

X MXX8

X7

6

X MXX5

X4

X3

2

X1

0

Test case?7654321Variant

Test Candidate Set

DTT–43

Test suite

 Candidate sets

12

14

8

4, 5

9, 11, 15

8, 10, 14

1, 3, 5, 7

 Minimum Test suite
variants

5 candidate sets 4 & 7

8 candidate sets 3 & 6

9 candidate set 5

12 candidate set 1

14 candidate set 2

