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Decision Table-Based Testing

Chapter 7
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Decision Tables - Wikipedia

 A precise yet compact way to model complicated logic

 Associate conditions with actions to perform

 Can associate many independent conditions with several
actions in an elegant way
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Decision Table Terminology

XXa4

XXa3

XXa2

XXXa1

-FT-FTc3

FTTFTTc2

FFFTTTc1

Rules
7,8

Rule 6Rule 5Rules
3,4

Rule 2Rule 1Stub

condition stubs       condition entries
action stubs             action entries
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Decision Table Terminology – 2

condition stubs       condition entries
action stubs             action entries

 Condition entries binary values
 We have a limited entry table

 Condition entries have more than two values
 We have an extended entry table
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Printer Troubleshooting DT

XXCheck for paper jam

XXXXCheck/replace ink

XXXXEnsure printer software is installed

XXCheck the printer-computer cable

XHeck the power cable

Actions

NYNYNYNYPrinter is unrecognized

NNYYNNYYA red light is flashing

NNNNYYYYPrinter does not print

Conditions

A complete limited entry table
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Test cases for decision tables

 How are the entries in a decision table interpreted
with respect to test cases?

 Condition entries?

 Action entries?
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Test cases for decision tables – 2

 Conditions are interpreted as
 Input
 Equivalence classes of inputs

 Actions are interpreted as
 Output
 Major functional processing portions

 With complete decision tables
 Have complete set of test cases
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Triangle Decision Table

XXXA5: Impossible

XA4:  Equilateral

XXXA3:  Isosceles

XA2:  Scalene

XA1:  Not a Triangle

FTFTFTFT–C5:  b = c?

FFTTFFTT–C4:  a = c?

FFFFTTTT–C3:  a = b?

TTTTTTTTFC1:  <a, b,c > forms a triangle?

Action added by a tester showing impossible rules
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Triangle Decision Table – refined

XXXA5:  Impossible

XA4:  Equilateral

XXXA3:  Isosceles

XA2:  Scalene

XXXA1:  Not a Triangle

FTFTFTFT–––C4:  b = c?

FFTTFFTT–––C3:  a = c?

FFFFTTTT–––C2:  a = b?

TTTTTTTTF––C1-3:  c < a+b?

TTTTTTTTTF–C1-2:  b < a+c?

TTTTTTTTTTFC1-1:  a < b+c?

Similar to equivalence classes we can refine the conditions
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Triangle Test Cases

Scalene543DT11

Isosceles223DT10

Isosceles232DT9

Impossible?????????DT8

Isosceles322DT7

Impossible?????????DT6

Impossible?????????DT5

Equilateral555DT4

Not a Triangle421DT3

Not a Triangle241DT2

Not a Triangle214DT1

Expected OutputcbaCase ID
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NextDate Decision Table

 The NextDate problem illustrates the correspondence
between equivalence classes and decision table structure

 The NextDate problem illustrates the problem of
dependencies in the input domain

 Decision tables can highlight such dependencies

 Impossible dates can be clearly marked as a separate action
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NextDate Equivalence Classes – for 1st try

M1 = {month : 1 .. 12 | days(month) = 30 }

M2 = {month : 1 .. 12 | days(month) = 31 }

M3 = {month : {2} }

D1 = {day : 1 .. 28}

D2 = {day : {29} }

D3 = {day : {30} }

D4 = {day : {31} }

Y1 = {year : 1812 .. 2012 | leap_year (year) }

Y2 = {year : 1812 .. 2012 | common_year (year) }

As in discussion for
equivalence classes
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NextDate decision table
with mutually exclusive conditions

A2: Next Date

A1: Impossible

T––C3: month in M3?

–T–C2: month in M2?

––TC1: month in M1?

Because a month is in an equivalence class
we cannot have T more than one entry. The do not care
entries are really F.
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NextDate DT (1st try - partial)

X

T

T

T

X

T

T

T

X

T

T

T

TTC7: day in D4?

XXXXXXXA2: Next Date

XXA1: Impossible

TTTTC9: year in Y2?

TTTTTC8: year in Y1?

TTC6: day in D3?

TTC5: day in D2?

TTTC4: day in D1?

C3: month in M3?

TC2: month in M2?

TTTTTTTTC1: month in M1?

How many rules
• for a complete table?
• with don't care entries?
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NextDate Equivalence Classes – for 2nd try

M1 = {month : 1 .. 12 | days(month) = 30 }

M2 = {month : 1 .. 12 | days(month) = 31 }

M3 = {month : {2} }

D1 = {day : 1 .. 28}

D2 = {day : {29} }

D3 = {day : {30} }

D4 = {day : {31} }

Y1 = {year : {2000} }

Y2 = {year : 1812 .. 2012 | leap_year (year) ∧ year ≠ 2000 }

Y3 = {year : 1812 .. 2012 | common_year (year) }

Handle leap year better
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NextDate DT (2nd try - part 1)

XA1: Impossible

???A6: Increment year

???A5: reset month

???XA4: Increment month

XXA3: Reset day

XXXXXA2: Increment day

––––––––C3: year in

D4D3D2D1D4D3D2D1C2: day in

M2M2M2M2M1M1M1M1C1: month in

Extended entry table – more refined actions

This table has 16 rules.
How many rules
for a complete table?
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NextDate DT (2nd try - part 2)

XXXXA1: Impossible

A6: Increment year

A5: reset month

XXXA4: Increment month

XXXA3: Reset day

XA2: Increment day

––Y3Y2Y1Y3Y2Y1C3: year in

D3D3D2D2D2D1D1D1C2: day in

M3M3M3M3M3M3M3M3C1: month in
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New Equivalence Classes – for 3rd try

M1 = {month : 1 .. 12 | days(month) = 30 }

M2 = {month : 1 .. 12 | days(month) = 31 ∧ month ≠ 12 }

M3 = {month : {12} }

M4 = {month : {2} }

D1 = {day : 1 .. 27}

D2 = {day : {28} }

D3 = {day : {29} }

D4 = {day : {30} }

D5 = {day : {31} }

Y1 = {year : 1812 .. 2012 | leap_year (year) }

Y2 = {year : 1812 .. 2012 | common_year (year) }

Handle end of month and
year better
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NextDate DT (3rd try - part 1)

X

–

D2

M2

X

–

D2

M1

X

–

D1

M1

XA1: Impossible

A6: Increment year

A5: reset month

XXA4: Increment month

XXA3: Reset day

XXXXA2: Increment day

–––––––C3: year in

D5D4D3D1D5D4D3C2: day in

M2M2M2M2M1M1M1C1: month in

A 22 rule table
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NextDate DT (3rd try - part 2)

X

–

D2

M3

X

–

D1

M3

X

–

D4

M3

X

–

D3

M3

XXXA1: Impossible

XA6: Increment year

XA5: reset month

XXA4: Increment month

XXXA3: Reset day

XXA2: Increment day

––Y2Y1Y2Y1––C3: year in

D5D4D3D3D2D2D1D5C2: day in

M4M4M4M4M4M4M4M3C1: month in
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Don't care entries and rule counts

 Limited entry tables with N conditions have 2N rules.
 Don't care entries reduce the number of rules by implying

the existence of non-explicitly stated rules.

 How many rules does a table contain including all the
implied rules due to don't care entries?
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Don't care entries and rule counts – 2

 Each don't care entry in a rule doubles the count for the
rule

 For each rule determine the corresponding rule count

 Total the rule counts
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Don't care entries and rule counts – 3

1111111181632Rule count

FTFTFTFT–––C4:  b = c?

FFTTFFTT–––C3:  a = c?

FFFFTTTT–––C2:  a = b?

TTTTTTTTF––C1-3:  c < a+b?

TTTTTTTTTF–C1-2:  b < a+c?

TTTTTTTTTTFC1-1:  a < b+c?

+/ = 64

= 26

1
2
3
4
5
6
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Don't care entries and rule counts – 4

 How many rules do extended entry tables have?

 What is the rule count with don't care entries?

 See DDT-16, -17 (NextDate 2'nd try)

 See DDT-19, -20 (NextDate 3'rd try)

 See Table 7.9, page 107, for a redundant table
 More rules than combination count of conditions

 See Table 7.10, page 108, for an inconsistent table
 More rules than combination count of conditions
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Applicability

 The specification is given or can be converted to a
decision table .

 The order in which the predicates are evaluated does not
affect the interpretation of the rules or resulting action.

 The order of rule evaluation has no effect on resulting
action .

 Once a rule is satisfied and the action selected, no other
rule need be examined.

 The order of executing actions in a satisfied rule is of no
consequence.
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Applicability – 2

 The restrictions do not in reality eliminate many potential
applications.

 In most applications, the order in which the predicates are
evaluated is immaterial.

 Some specific ordering may be more efficient than some
other but in general the ordering is not inherent in the
program's logic.
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Decision Tables – Properties

 You have constructed a decision table

 Before deriving test cases, what properties should
the decision table have?
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Decision Tables – Properties – 2

 Before deriving test cases, ensure that

 The rules are complete
 Every combination of predicate truth values is  explicit in

the decision table

 The rules are consistent
 Every combination of predicate truth values results in

only one action or set of actions
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Guidelines and Observations

 Decision Table testing is most appropriate for programs
where one or more of the conditions hold.

 What are those conditions?
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Guidelines and Observations – 2

 Decision Table testing is most appropriate for programs
where
 There is a lot of decision making

 There are important logical relationships among input
variables

 There are calculations involving subsets of input variables

 There are cause and effect relationships between input and
output

 There is complex computation logic (high cyclomatic
complexity)
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Guidelines and Observations – 3

 What are some problems with using decision tables?
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Guidelines and Observations – 4

 Decision tables do not scale up very well
 May need to

 Use extended entry decision tables
 Algebraically simplify tables

 Decision tables need to be iteratively refined
 The first attempt may be far from satisfactory

 Similar to using equivalence classes
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Guidelines and Observations – 5

 Redundant rules
 More rules than combination count of conditions
 Actions are the same
 Too many test cases
 See Table 7.9, page 107

 Inconsistent rules
 More rules than combination count of conditions
 Actions are different for the same conditions
 See Table 7.10, page 108

 Missing rules
 Incomplete table
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Variable Negation Strategy

 An approach that can help with the scaling problems of
decision table-based testing

 Applicable when the system under test can be
represented as a truth table (binary input and output)

 Designed to select a small subset of the 2N test cases
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Example truth table

1111115

0011114

1101113

1001112

1110111

0010110

110019

000018

011107

001106

010105

000104

011003

001002

010001

000000

ZDCBA

Ignition EnableManual ModeDamper ShutCall For HeatNormal PressureVariant
Number

Z = F (A, B, C, D)
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Deriving the Logic Function

 Boolean algebra expressions
 A B = A and B
 A + B = A or B
 ~A = not A

 A logic function maps N Boolean input variables to a
Boolean output variable

 A truth table is an enumeration of all possible input and
output values
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Logic function

 The logic function for the example is

Z = A B ~C  +  A D

 Several techniques to derive it
 Karnaugh maps
 Cause-effect graphs

 A compact logic function will produce more powerful test
cases
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Variable Negation Strategy

 Designed to reveal faults that hide in a don’t care

 The test suite contains:
 Unique true points: A variant per term t, so that t is True

and all other terms are False
 In the expression A B ~C  +  A D ,  A B ~C and A D

are terms
 Near False Points: A variant for each literal in a term. The

variant is obtained by negating the literal and is selected
only if it makes Z = 0

 Each term variant creates a test candidate set
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True points

 Unique true point candidate sets in boiler example

  Variants in the set {12} make A B ~C true but not A D
 Variant 13 makes both A B ~C and A D true and as a

consequence is not included in the set

 Variants in the the set {9,11,15} make A D true but not
A B ~C

 Variant 13 makes both A B ~C and A D true and as a
consequence is not included in the set
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Near false points

1, 3, 5, 71, 3, 5, 7~A D7

8, 10, 148, 10, 12, 14A ~D6

9, 11, 15–A D5 Org. term

4, 54, 5~A B ~C4

88, 9A ~B ~C3

1414, 15A B C2

12–A B ~C1 Org. term

Function variants
containing this
negation where
Z = 0

Function variants
containing this
negation

Term
negation

Candidate
set number

Near false points are in black, candidate set numbers
2, 3, 4, 6 and 7.  In green are true points.
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Selecting the test cases

 At least one variant from each candidate set

 Can be done by inspection

 Random selection is also used

 Near False Points exercise combinations of don’t care
values

 6% of all possible tests are created

 98% of simulated bugs can be found
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Selecting test cases – 2

X     .X15

X    MXX14

13

X    MX12

X      .X11

X10

       MX9

X    MXX8

X7

6

X    MXX5

X4

X3

2

X1

0

Test case?7654321Variant

Test Candidate Set
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Test suite

 Candidate sets

12

14

8

4, 5

9, 11, 15

8, 10, 14

1, 3, 5, 7

 Minimum Test suite
variants

5    candidate sets 4 & 7

8    candidate sets 3 & 6

9    candidate set 5

12  candidate set 1

14  candidate set 2


