Decision Table-Based Testing

Chapter 7

- A precise yet compact way to model complicated logic
- Associate conditions with actions to perform
- Can associate many independent conditions with several actions in an elegant way

Decision Table Terminology

Stub	Rule 1	Rule 2	Rules 3,4	Rule 5	Rule 6	Rules 7,8
c1	Т	Т	Т	F	F	F
c2	Т	Т	F	Т	Т	F
c3	Т	F	-	Т	F	-
a1	X	X		X		
a2	X				X	
a3		X		X		
a4			X			X

condition stubs	condition entries
action stubs	action entries

- Condition entries binary values
 - We have a **limited entry table**
- Condition entries have more than two values
 - We have an **extended entry table**

condition stubs	condition entries
action stubs	action entries

	Printer does not print	Y	Y	Y	Y	Ν	Ν	Ν	Ν
Conditions	A red light is flashing	Y	Y	N	Ν	Y	Y	Ν	Ν
	Printer is unrecognized	Y	Ν	Y	Ν	Y	Ν	Y	Ν
	Heck the power cable			x					
	Check the printer-computer cable	X		X					
Actions	Ensure printer software is installed	X		X		Х		Х	
	Check/replace ink	Х	X			Х	Х		
	Check for paper jam		Х		Х				

A complete limited entry table

- How are the entries in a decision table interpreted with respect to test cases?
 - Condition entries?
 - Action entries?

Test cases for decision tables – 2

- Conditions are interpreted as
 - Input
 - Equivalence classes of inputs
- Actions are interpreted as
 - Output
 - Major functional processing portions
- With complete decision tables
 - Have complete set of test cases

Triangle Decision Table

C1: <a, b,c=""> forms a triangle?</a,>	F	Т	Т	Т	Т	Т	Т	Т	Т
C3: a = b?	-	Т	Т	Т	Т	F	F	F	F
C4: a = c?	-	Т	Т	F	F	Т	Т	F	F
C5: b = c?	_	Т	F	Т	F	Т	F	Т	F
A1: Not a Triangle	X								
A2: Scalene									X
A3: Isosceles					X		X	Х	
A4: Equilateral		Х							
A5: Impossible			X	X		X			

Action added by a tester showing impossible rules

Triangle Decision Table – refined

C1-1: a < b+c?	F	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
C1-2: b < a+c?	_	F	Т	Т	Т	Т	Т	Т	Т	Т	Т
C1-3: c < a+b?	—	_	F	Т	Т	Т	Т	Т	Т	Т	Т
C2: a = b?	_	_	_	Т	Т	Т	Т	F	F	F	F
C3: a = c?	—	_	_	Т	Т	F	F	Т	Т	F	F
C4: b = c?	—	—	_	Т	F	Т	F	Т	F	Т	F
A1: Not a Triangle	Х	X	X								
A2: Scalene											X
A3: Isosceles							X		Х	Х	
A4: Equilateral				Х							
A5: Impossible					Х	Х		Х			

Similar to equivalence classes we can refine the conditions

Case ID	а	b	С	Expected Output
DT1	4	1	2	Not a Triangle
DT2	1	4	2	Not a Triangle
DT3	1	2	4	Not a Triangle
DT4	5	5	5	Equilateral
DT5	???	???	???	Impossible
DT6	???	???	???	Impossible
DT7	2	2	3	Isosceles
DT8	???	???	???	Impossible
DT9	2	3	2	Isosceles
DT10	3	2	2	Isosceles
DT11	3	4	5	Scalene

- The NextDate problem illustrates the correspondence between equivalence classes and decision table structure
- The NextDate problem illustrates the problem of dependencies in the input domain
 - Decision tables can highlight such dependencies
 - Impossible dates can be clearly marked as a separate action

NextDate decision table with mutually exclusive conditions

C1: month in M1?	Т	_	_
C2: month in M2?	_	Т	
C3: month in M3?	_	_	Т
A1: Impossible			
A2: Next Date			

Because a month is in an equivalence class we cannot have T more than one entry. The do not care entries are really F.

NextDate DT (1st try - partial)

How many rulesfor a complete table?

• with don't care entries?

C1: month in M1?	Т	Т	Т	Т	Т	Т	Т	Т				
C2: month in M2?									Т	Т	Т	Т
C3: month in M3?												
C4: day in D1?	Т	Т							Т	Т		
C5: day in D2?			Т	Т							Т	Т
C6: day in D3?					Т	Т						
C7: day in D4?							Т	Т				
C8: year in Y1?	Т		Т		Т		Т		Т		Т	
C9: year in Y2?		Т		Т		Т		Т		Т		Т
A1: Impossible							Х	Х				
A2: Next Date	Х	X	X	Х	Х	Х			Х	Х	Х	Х

DTT-14

This table has 16 rules. How many rules for a complete table?

C1: month in	M1	M1	M1	M1	M2	M2	M2	M2
C2: day in	D1	D2	D3	D4	D1	D2	D3	D4
C3: year in	—		_	—	_	_		_
A1: Impossible				X				
A2: Increment day	X	Х			Х	Х	Х	
A3: Reset day			X					X
A4: Increment month			X					???
A5: reset month								???
A6: Increment year								???

Extended entry table – more refined actions

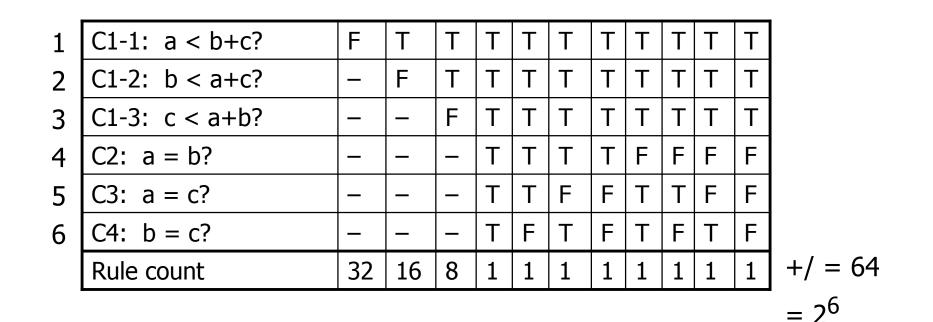
C1: month in	M3							
C2: day in	D1	D1	D1	D2	D2	D2	D3	D3
C3: year in	Y1	Y2	Y3	Y1	Y2	Y3	_	—
A1: Impossible				X		Х	Х	Х
A2: Increment day		Х						
A3: Reset day	X		X		Х			
A4: Increment month	X		X		Х			
A5: reset month								
A6: Increment year								

A 22 rule table

C1: month in	M1	M1	M1	M1	M1	M2	M2	M2	M2	M2
C2: day in	D1	D2	D3	D4	D5	D1	D2	D3	D4	D5
C3: year in		_	_	_	_	_	_	_	_	_
A1: Impossible					X					
A2: Increment day	Х	Х	Х			Х	Х	Х	Х	
A3: Reset day				Х						X
A4: Increment month				Х						X
A5: reset month										
A6: Increment year										

NextDate DT (3rd try - part 2)

C1: month in	M3	M3	M3	M3	M3	M4						
C2: day in	D1	D2	D3	D4	D5	D1	D2	D2	D3	D3	D4	D5
C3: year in	_	—	—	—		_	Y1	Y2	Y1	Y2		—
A1: Impossible										Х	Х	Х
A2: Increment day	X	X	X	Х		X	X					
A3: Reset day					X			X	Х			
A4: Increment month								X	Х			
A5: reset month					X							
A6: Increment year					X							


Don't care entries and rule counts

- Limited entry tables with N conditions have 2^N rules.
- Don't care entries reduce the number of rules by implying the existence of non-explicitly stated rules.
 - How many rules does a table contain including all the implied rules due to don't care entries?

- Each don't care entry in a rule doubles the count for the rule
- For each rule determine the corresponding rule count
- Total the rule counts

Don't care entries and rule counts – 3

Don't care entries and rule counts – 4

- How many rules do extended entry tables have?
- What is the rule count with don't care entries?
 - See DDT-16, -17 (NextDate 2'nd try)
 - See DDT-19, -20 (NextDate 3'rd try)
 - See Table 7.9, page 107, for a redundant table
 - More rules than combination count of conditions
 - See Table 7.10, page 108, for an inconsistent table
 - More rules than combination count of conditions

- The specification is given or can be converted to a decision table .
- The order in which the predicates are evaluated does not affect the interpretation of the rules or resulting action.
- The order of rule evaluation has no effect on resulting action .
- Once a rule is satisfied and the action selected, no other rule need be examined.
- The order of executing actions in a satisfied rule is of no consequence.

- The restrictions do not in reality eliminate many potential applications.
 - In most applications, the order in which the predicates are evaluated is immaterial.
 - Some specific ordering may be more efficient than some other but in general the ordering is not inherent in the program's logic.

- You have constructed a decision table
 - Before deriving test cases, what properties should the decision table have?

- Before deriving test cases, ensure that
 - The rules are complete
 - Every combination of predicate truth values is explicit in the decision table
 - The rules are consistent
 - Every combination of predicate truth values results in only one action or set of actions

- Decision Table testing is most appropriate for programs where one or more of the conditions hold.
 - What are those conditions?

- Decision Table testing is most appropriate for programs where
 - There is a lot of decision making
 - There are important logical relationships among input variables
 - There are calculations involving subsets of input variables
 - There are cause and effect relationships between input and output
 - There is complex computation logic (high cyclomatic complexity)

• What are some problems with using decision tables?

- Decision tables do not scale up very well
 - May need to
 - Use extended entry decision tables
 - Algebraically simplify tables

- Decision tables need to be iteratively refined
 - The first attempt may be far from satisfactory
 - Similar to using equivalence classes

Guidelines and Observations – 5

- Redundant rules
 - More rules than combination count of conditions
 - Actions are the same
 - Too many test cases
 - See Table 7.9, page 107
- Inconsistent rules
 - More rules than combination count of conditions
 - Actions are different for the same conditions
 - See Table 7.10, page 108
- Missing rules
 - Incomplete table

- An approach that can help with the scaling problems of decision table-based testing
- Applicable when the system under test can be represented as a truth table (binary input and output)
- Designed to select a small subset of the 2^N test cases

Z = F (A, B, C, D)

Variant	Normal Pressure	Call For Heat	Damper Shut	Manual Mode	Ignition Enable
Number	Α	В	С	D	Z
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

- Boolean algebra expressions
 - **A B** = A and B
 - **A** + **B** = A or B
 - ~**A** = not A
- A logic function maps N Boolean input variables to a Boolean output variable
- A truth table is an enumeration of all possible input and output values

• The logic function for the example is

 $Z = A B \sim C + A D$

- Several techniques to derive it
 - Karnaugh maps
 - Cause-effect graphs
- A compact logic function will produce more powerful test cases

- Designed to reveal faults that hide in a don't care
- The test suite contains:
 - Unique true points: A variant per term t, so that t is True and all other terms are False
 - In the expression A B ~C + A D , A B ~C and A D are terms
 - Near False Points: A variant for each literal in a term. The variant is obtained by negating the literal and is selected only if it makes Z = 0
- Each term variant creates a test candidate set

Unique true point candidate sets in boiler example

- Variants in the set {12} make A B ~C true but not A D
 - Variant 13 makes both A B ~C and A D true and as a consequence is not included in the set
- Variants in the set {9,11,15} make A D true but not
 A B ~C
 - Variant 13 makes both A B ~C and A D true and as a consequence is not included in the set

Near false points

Candidate set number	Term negation	Function variants containing this negation	Function variants containing this negation where Z = 0		
1 Org. term	A B ~C	_	12		
2	A B C	14, 15	14		
3	A ~B ~C	8, 9	8		
4	~A B ~C	4, 5	4, 5		
5 Org. term	A D	_	9, 11, 15		
6	A ~D	8, 10, 12, 14	8, 10, 14		
7	~A D	1, 3, 5, 7	1, 3, 5, 7		

Near false points are in black, candidate set numbers 2, 3, 4, 6 and 7. In green are true points.

- At least one variant from each candidate set
- Can be done by inspection
- Random selection is also used
- Near False Points exercise combinations of don't care values
- 6% of all possible tests are created
- 98% of simulated bugs can be found

Variant	1	2	3	4	5	6	7	Test case?
0								
1							X	
2								
3							X	
4				X				
5				X			X	XM
6								
7							X	
8			X			X		XM
9					X			М
10						X		
11					X			Χ.
12	X							XM
13								
14		X				X		XM
15					X			Χ.

Test Candidate Set

DTT-42

- Candidate sets
 - 12 14

 - 8
 - 4, 5
 - 9, 11, 15
 - 8, 10, 14
 - 1, 3, 5, 7

- Minimum Test suite variants
 - 5 candidate sets 4 & 7
 - 8 candidate sets 3 & 6
 - 9 candidate set 5
 - 12 candidate set 1
 - 14 candidate set 2