Winter 2009 CSE-3421: Database Systems—Godfrey p- 1

The Database System

Architectural Overview

Important Aspects

e For permanence, data is on disk.
e To work on data, it must be in main memory.
(But main memory is volatile!)

e Main memory is thousands of times faster than disk memory:.

Primitive Operations

e Read a piece of data.

e Vrite a piece of data.

Within the database system, a transaction is just a sequence of

reads and writes.




Winter 2009 CSE-3421: Database Systems—Godfrey p. 2

Transaction Management

Certain sets of actions on the database we want to occur together.
Such a set of actions we call a transaction.

Properties:

e Atomicity
e Consistency
e Isolation

e Durability

Goes hand-in-hand with concurrency control. The RDBMS should

be able to handle 100,000’s transactions a minute.
Some of these will be in conflict.

So a transaction may

e commit or

e abort (a.k.a. rollback)




Winter 2009 CSE-3421: Database Systems—Godfrey

Atomicity
All or Nothing

e insert into sailors values
(53, dopey’, 26, 7);

e insert into sailors values
(53, 'dopey’, 26, 7),
(54, 'sleepy’, 29, 3),
(55, 'doc’, 43, 10);




Winter 2009 CSE-3421: Database Systems—Godfrey

Consistency

create table WorldBank (
acct# char(12) not null,
name varchar(50) not null,
balance decimal(15,2) not null,
primary key (acct#),
check (balance >= 0)
);
transfer (from, to, amount) {
update WorldBank
set balance = balance - :amount

where acct# = :from;

update WorldBank
set balance = balance + :amount

where acct# = :to;

commit;




Winter 2009 CSE-3421: Database Systems—Godfrey

Isolation

T;: transfer(13, 21, 100.00);
Ty: transfer(13, 34, 100.00);

How to ensure that X-acts do not “step on” one another?

How do we avoid inconsistencies that could arise due to concurrent

X-acts?




Winter 2009 CSE-3421: Database Systems—Godfrey

Durability

Once a X-act commits, its effects on the database are permanent.

(But not before then!)

e At what point can a X-act commit?
e Can other concurrent X-acts derail it?

e When will a X-act be aborted?

Note: The APP / X-act can decide to abort (rollback) itself at any

time (up until a commit).




Winter 2009 CSE-3421: Database Systems—Godfrey p- 7

Durabilty and Crashes

What do we do if the DB crashes while some X-acts are still active?

e All uncommitted X-acts are effectivelt aborted on reboot.

e By durability, all committed X-acts must be reflected in the DB.
(But they may not have been written to disk yet at the time of
the crash!)

The RDBMS logs all actions so that it can undo the actions of all

uncommitted transactions, and it can redo all committed

transactions that did not make it to disk.




Winter 2009 CSE-3421: Database Systems—Godfrey

Serializability

inflate (percent) {
update WorldBank

set balance = balance * (1.0 4 :percent)

commit;
i

T;: transfer(34, 13, 100.00);
Ty: inflate(13, 0.06);

We will accept any equivalent schedule such that the end effect is

equivalent to some serial schedule.

Such a schedule is called serializable.

That X-acts can abort greatly complicates things!

What could go wrong if we just picked any schedule?




Winter 2009

CSE-3421: Database Systems—Godfrey

Anomalies
“Dirty Reads” / WR Conflicts

T T
R(A)
W(A)
R(A)
W(A)
commit
R(B)
W (B)
abort




Winter 2009

CSE-3421: Database Systems—Godfrey

Anomalies
Unrepeatable Reads / RW Conflicts

Ty

T

R(A)

commit

R(A)
W(A)

comimit




Winter 2009 CSE-3421: Database Systems—Godfrey p- 11

Anomalies
Overwriting / WW Conflicts

T T
W(A)
W(A)
W(B)

commit




Winter 2009 CSE-3421: Database Systems—Godfrey

.12

Locks

How can we avoid such anomalies / conflicts? Locks!

Types of locks:

e S(A): Shared lock on A.
Fine if X-act only needs to read A.
e X(A): Exclusive lock on A.

Necessary if X-act needs to write A.

Granularity

What is A? What do we lock?

e table

® page

e row (tuple)

e cell (attribute in a tuple)

e index

Smaller granularity allows more concurrency, but is harder to

manage.




Winter 2009

CSE-3421: Database Systems—Godfrey

Cascading Aborts

T

T3

X(A)
R(A)
W(A)
X(A)




Winter 2009 CSE-3421: Database Systems—Godfrey

.14

Purchase X-act

purchase (acct, merchant, state, amount) {
select percent into :percent
from TaxRate

where state = :state

update WorldBank
set balance = balance - (:amount * (1.0 + :percent))

where acct# = :acct;

update WorldBank
set balance = balance + :amount

where acct# = :merchant;

update WorldBank
set balance = balance + (:amount * :percent)
where acct# = (
select acct#
from TaxRate

where state = :state

commit;




Winter 2009 CSE-3421: Database Systems—Godfrey p.- 15

Deadlocks

A deadlock occurs when two (or more!) X-acts are mutually waiting

on locks to be released that the others hold.

e Can deadlocks be avoided?

e [s it worth avoiding them?

e How do we resolve deadlocks (if they are “allowed” to occur)?

For that matter, can we avoid cascading aborts?




Winter 2009 CSE-3421: Database Systems—Godfrey

Two-phase Locking

e Fach X-act must obtain a shared lock on each object before
reading, and an exclusive lock on each obhect before writing.

e All locks are released at the completion of the X-act (strict
2PL).

e [f any X-act holds an exclusive lock on A, no other X-act can

have a shared or exclusive lock on A.

Strict 2PL

e allows only serializable schedules, and

e makes cascading aborts unnecessary:.

It does not prevent deadlocks.




Winter 2009 CSE-3421: Database Systems—Godfrey

Transaction Modes (p. 539)

e Serializable
e Repeatable Read
e Read Committed

e Read Uncommitted

Serializable is just as advertised.

Repeatable Read avoids all the anomalies we discussed, except

phantoms!

Read Committed releases a shared lock after reading. So

unrepeatable read anomalies are possible.

Read Uncommitted obtains no locks! (Must be of type read only.)




Winter 2009 CSE-3421: Database Systems—Godfrey p.- 18

Aborting

e If T, is aborted, all its actions must be undone.

If T; read an object after T; wrote it, T; must be aborted too.
e Cascading aborts can be avoided by only releasing a X-act’s

locks at completion (commit / abort) time.

So if T; writes an object, T'; can only read this object after T
is done.
e To undo actions, the RDBMS must maintain a log which records

every write.

The log mechanism is also used in crash recovery. All X-acts

active at the time of the crash are aborted when the database

system reboots.




Winter 2009 CSE-3421: Database Systems—Godfrey p- 19

The Log

Actions recorded in the log:

e T, writes an object.
— the old value

— the new value

The log record must go to disk before the changed page.

e T, commit or T, abort.

Log records are chained together by a X-act ID, so it is easy to undo

a specific X-act.

The log is often duplexed and archived on stable storage for crash

recovery.

All concurrency control (CC) activities—logging, locking, and

deadlock control—are handled by the RDBMS transparently!




Winter 2009 CSE-3421: Database Systems—Godfrey p- 20

Crash Recovery (ARIES)

The three phases of the ARIES recovery algorithm:

e Analysis: Scan the log forward and find all X-acts that were
active (committed, aborted, and continuing) since the last
checkpoint.

e Redo: Redoes all writes (updates to dirty pages) in the buffer
pool (as needed) to ensure all logged updates are carried out and
(eventually) written to disk.

e Undo: Undoes the writes of all X-acts active at the crash,

working backwards through the log.

Care must be taken to handle the case of a crash during the

recovery itself!




